How to use OS utilities to track down application memory leaks

本文介绍如何使用ps、valgrind和c++filt等工具诊断Red Hat Enterprise Linux中应用程序的内存泄漏问题。通过三步法,首先识别可疑进程,然后利用valgrind收集内存信息,最后用c++filt解析valgrind输出,精确定位C++二进制文件中的泄漏源。

转自:https://access.redhat.com/solutions/32526

 SOLUTION UNVERIFIED - 已更新 2014年三月28日05:54 - 

English 

环境

  • Red Hat Enterprise Linux 4
  • Red Hat Enterprise Linux 5
  • Red Hat Enterprise Linux 6
  • valgrind
  • c++filt

问题

  • How to use OS utilities such as psvalgrind and c++filt to track down application memory leaks.

决议

  • To determine what applications and code are using the most memory and to analize those programs for leaks and issues can be a complex process. Programs such as pstopvalgrind 1 and pmap can be used to identify and analize memory leaks. The complete use of these tools is beyond the scope of this article.

  • The valgrind program comes from the valgrind package and can be installed from RHN by running up2date or yum install valgrind. The valgrind manual in pdf and html format are provided within the package. See /usr/share/doc/valgrind-*version*/valgrind_manual.pdf for more infomation.

  • c++filt program comes from the binutils package and can be installed from RHN by running yum install binutils. See What is c++filt used for and how do I use it? for more information.


  1. https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-memory-valgrind.html 

诊断步骤

A simple 3 step approach may used in troubleshooting many memory problems.

  1. Identify suspect processes with ps or top.
  2. Use valgrind to go collect memory information about the suspect process.
  3. In the case of a C++ binary Use c++filt to further analyse the valgrind output.

This technique is has been greatly simplified for this article. Please refer to the man pages for each program for additional details.

1. Use a utility such as ps to identify suspect process.

The following ps command will sort the top 20 processes by memory usage.

Raw

# ps auwwx|gawk '!/%MEM/ {print $4,$11}'|sort -nr|head -n20

This will list additional process which may have a high thread count and may be of interest.

Raw

# ps auwwx|gawk '{count[$NF]++}END{for(j in count) print ""count[j]":",j}'|sort -nr|head -n20

2. Once a list of suspect applications has been created, use tools such as valgrind to collect further information from each application. (See valgrind 1 documentation for additional usage instructions.)

An example command to look for memory leaks explicitly (Vlagrind does far more than just this task) might look like this.

Raw

# valgrind --trace-children=yes --show-reachable=yes --track-origins=yes --read-var-info=yes --tool=memcheck --leak-check=full --num-callers=50 -v --time-stamp=yes --log-file=leaky.log leaky-app

Where leaky-app is the application that is leaking.

Use the valgrind output log to look for leaked memory. The following example summary from a valgrind output log identifies at least 4 lost records.

Raw

==1737== LEAK SUMMARY:
==1737==    definitely lost: 2,051 bytes in 7 blocks
==1737==    indirectly lost: 0 bytes in 0 blocks
==1737==      possibly lost: 2,080 bytes in 30 blocks
==1737==    still reachable: 35,572 bytes in 241 blocks
==1737==         suppressed: 0 bytes in 0 blocks

Use this data to track down possible issues by looking for the word 'definitely'.

Raw

$ grep definitely valgrind.log
==1737==    definitely lost: 0 bytes in 0 blocks
==1737== 0 bytes in 4 blocks are definitely lost in loss record 1 of 179
==1737== 2 bytes in 1 blocks are definitely lost in loss record 2 of 179
==1737== 1,024 bytes in 1 blocks are definitely lost in loss record 173 of 179
==1737== 1,025 bytes in 1 blocks are definitely lost in loss record 174 of 179
==1737==    definitely lost: 2,051 bytes in 7 blocks

From this output it can be seen that the totals match (1,024 + 1,025 + 2 equals 2,051 and 4 + 1 + 1 + 1 equals 7.)

3. Use programs such as c++filt to investigate these four entries further. Note that c++filt is only necessary in the case of a C++ binary as it demangles the symbols that valgrind displays.

The following is an edited example on how to feed the valgrind output log to the c++filt program and is an example of where to begin looking for the 4 suspect entries identified above. Use the stanzas below the identifing headers (in this example the suspect code was edited and replaced with [removed]) to look for potential issues in these locations within the applications' code.

Raw

$ c++filt< valgrind.log|less

==1737== 0 bytes in 4 blocks are definitely lost in loss record 1 of 179
[removed]
==1737== 2 bytes in 1 blocks are definitely lost in loss record 2 of 179
[removed]
==1737== 1,024 bytes in 1 blocks are definitely lost in loss record 173 of 179
[removed]
==1737== 1,025 bytes in 1 blocks are definitely lost in loss record 174 of 179
[removed]

Note: The ability to identify in a processes where a memory leak is suspect to occur can be difficult and is typically performed during the application's development.


  1. https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-memory-valgrind.html 

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值