How to use OS utilities to track down application memory leaks

本文介绍如何使用ps、valgrind和c++filt等工具诊断Red Hat Enterprise Linux中应用程序的内存泄漏问题。通过三步法,首先识别可疑进程,然后利用valgrind收集内存信息,最后用c++filt解析valgrind输出,精确定位C++二进制文件中的泄漏源。

转自:https://access.redhat.com/solutions/32526

 SOLUTION UNVERIFIED - 已更新 2014年三月28日05:54 - 

English 

环境

  • Red Hat Enterprise Linux 4
  • Red Hat Enterprise Linux 5
  • Red Hat Enterprise Linux 6
  • valgrind
  • c++filt

问题

  • How to use OS utilities such as psvalgrind and c++filt to track down application memory leaks.

决议

  • To determine what applications and code are using the most memory and to analize those programs for leaks and issues can be a complex process. Programs such as pstopvalgrind 1 and pmap can be used to identify and analize memory leaks. The complete use of these tools is beyond the scope of this article.

  • The valgrind program comes from the valgrind package and can be installed from RHN by running up2date or yum install valgrind. The valgrind manual in pdf and html format are provided within the package. See /usr/share/doc/valgrind-*version*/valgrind_manual.pdf for more infomation.

  • c++filt program comes from the binutils package and can be installed from RHN by running yum install binutils. See What is c++filt used for and how do I use it? for more information.


  1. https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-memory-valgrind.html 

诊断步骤

A simple 3 step approach may used in troubleshooting many memory problems.

  1. Identify suspect processes with ps or top.
  2. Use valgrind to go collect memory information about the suspect process.
  3. In the case of a C++ binary Use c++filt to further analyse the valgrind output.

This technique is has been greatly simplified for this article. Please refer to the man pages for each program for additional details.

1. Use a utility such as ps to identify suspect process.

The following ps command will sort the top 20 processes by memory usage.

Raw

# ps auwwx|gawk '!/%MEM/ {print $4,$11}'|sort -nr|head -n20

This will list additional process which may have a high thread count and may be of interest.

Raw

# ps auwwx|gawk '{count[$NF]++}END{for(j in count) print ""count[j]":",j}'|sort -nr|head -n20

2. Once a list of suspect applications has been created, use tools such as valgrind to collect further information from each application. (See valgrind 1 documentation for additional usage instructions.)

An example command to look for memory leaks explicitly (Vlagrind does far more than just this task) might look like this.

Raw

# valgrind --trace-children=yes --show-reachable=yes --track-origins=yes --read-var-info=yes --tool=memcheck --leak-check=full --num-callers=50 -v --time-stamp=yes --log-file=leaky.log leaky-app

Where leaky-app is the application that is leaking.

Use the valgrind output log to look for leaked memory. The following example summary from a valgrind output log identifies at least 4 lost records.

Raw

==1737== LEAK SUMMARY:
==1737==    definitely lost: 2,051 bytes in 7 blocks
==1737==    indirectly lost: 0 bytes in 0 blocks
==1737==      possibly lost: 2,080 bytes in 30 blocks
==1737==    still reachable: 35,572 bytes in 241 blocks
==1737==         suppressed: 0 bytes in 0 blocks

Use this data to track down possible issues by looking for the word 'definitely'.

Raw

$ grep definitely valgrind.log
==1737==    definitely lost: 0 bytes in 0 blocks
==1737== 0 bytes in 4 blocks are definitely lost in loss record 1 of 179
==1737== 2 bytes in 1 blocks are definitely lost in loss record 2 of 179
==1737== 1,024 bytes in 1 blocks are definitely lost in loss record 173 of 179
==1737== 1,025 bytes in 1 blocks are definitely lost in loss record 174 of 179
==1737==    definitely lost: 2,051 bytes in 7 blocks

From this output it can be seen that the totals match (1,024 + 1,025 + 2 equals 2,051 and 4 + 1 + 1 + 1 equals 7.)

3. Use programs such as c++filt to investigate these four entries further. Note that c++filt is only necessary in the case of a C++ binary as it demangles the symbols that valgrind displays.

The following is an edited example on how to feed the valgrind output log to the c++filt program and is an example of where to begin looking for the 4 suspect entries identified above. Use the stanzas below the identifing headers (in this example the suspect code was edited and replaced with [removed]) to look for potential issues in these locations within the applications' code.

Raw

$ c++filt< valgrind.log|less

==1737== 0 bytes in 4 blocks are definitely lost in loss record 1 of 179
[removed]
==1737== 2 bytes in 1 blocks are definitely lost in loss record 2 of 179
[removed]
==1737== 1,024 bytes in 1 blocks are definitely lost in loss record 173 of 179
[removed]
==1737== 1,025 bytes in 1 blocks are definitely lost in loss record 174 of 179
[removed]

Note: The ability to identify in a processes where a memory leak is suspect to occur can be difficult and is typically performed during the application's development.


  1. https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-memory-valgrind.html 

【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,最终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值