Are temporary tables auto vacuumed in PostgreSQL?

本文探讨了PostgreSQL中临时表是否受到自动VACUUM的影响,通过实验发现,即使更改大量行,临时表的最后自动VACUUM时间也不会更新,表明PostgreSQL不会对临时表进行自动VACUUM。文章还提供了手动执行VACUUM和ANALYZE操作的方法。

https://blog.dbi-services.com/are-temporary-tables-auto-vacuumed-in-postgresql/

While doing the EDB quiz at their booth last week at pgconfeu one of the questions was: Are temporary tables auto vacuumed? What do you think? My first thought was yes, but lets see. The first question we need to answer is: How can we check if a table (no matter if temporary or not for now) was auto vacuumed or not? PostgreSQL comes with many views that expose statistical information and one of those is pg_stat_all_tables. Lets have a look …

 

When you describe that view there is column named “last_autovacuum”:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

postgres=# \d pg_stat_all_tables

                      View "pg_catalog.pg_stat_all_tables"

       Column        |           Type           | Collation | Nullable | Default

---------------------+--------------------------+-----------+----------+---------

 relid               | oid                      |           |          |

 schemaname          | name                     |           |          |

 relname             | name                     |           |          |

 seq_scan            | bigint                   |           |          |

 seq_tup_read        | bigint                   |           |          |

 idx_scan            | bigint                   |           |          |

 idx_tup_fetch       | bigint                   |           |          |

 n_tup_ins           | bigint                   |           |          |

 n_tup_upd           | bigint                   |           |          |

 n_tup_del           | bigint                   |           |          |

 n_tup_hot_upd       | bigint                   |           |          |

 n_live_tup          | bigint                   |           |          |

 n_dead_tup          | bigint                   |           |          |

 n_mod_since_analyze | bigint                   |           |          |

 last_vacuum         | timestamp with time zone |           |          |

 last_autovacuum     | timestamp with time zone |           |          |

 last_analyze        | timestamp with time zone |           |          |

 last_autoanalyze    | timestamp with time zone |           |          |

 vacuum_count        | bigint                   |           |          |

 autovacuum_count    | bigint                   |           |          |

 analyze_count       | bigint                   |           |          |

 autoanalyze_count   | bigint                   |           |          |

That should give us the time of the last autovacuum, right? Before we begin, here are my autovacuum settings which are all at their defaults:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

postgres=# select name,setting from pg_settings where name like '%autovacuum%' order by 1;

                name                 |  setting 

-------------------------------------+-----------

 autovacuum                          | on

 autovacuum_analyze_scale_factor     | 0.1

 autovacuum_analyze_threshold        | 50

 autovacuum_freeze_max_age           | 200000000

 autovacuum_max_workers              | 3

 autovacuum_multixact_freeze_max_age | 400000000

 autovacuum_naptime                  | 60

 autovacuum_vacuum_cost_delay        | 20

 autovacuum_vacuum_cost_limit        | -1

 autovacuum_vacuum_scale_factor      | 0.2

 autovacuum_vacuum_threshold         | 50

 autovacuum_work_mem                 | -1

 log_autovacuum_min_duration         | -1

(13 rows)

That means autovacuum should kick in as soon as we change 50 rows in a table because autovacuum_vacuum_threshold is set to 50? The table:

1

2

3

4

5

6

7

8

9

postgres=# create table t1 (a int, b varchar(50));

CREATE TABLE

postgres=# insert into t1 (a,b) select a, md5(a::varchar) from generate_series ( 1, 1000000 ) a;

INSERT 0 1000000

postgres=# select count(*) from t1;

  count 

---------

 1000000

(1 row)

As soon as we change 50 or more rows we should see the last_autovacuum column updated in pg_stat_all_tables, so lets check:

1

2

3

4

5

6

7

8

9

10

11

12

postgres=# update t1 set a = a + 1 where a < 1000;

UPDATE 999

postgres=# select pg_sleep(10);

 pg_sleep

----------

  

(1 row)

postgres=# select relname,last_autovacuum from pg_stat_all_tables where relname = 't1';

 relname | last_autovacuum

---------+-----------------

 t1      |

(1 row)

Hm, not really what was expected. When you check the documentation there is a formula we need to consider for our test, which is

1

vacuum threshold = autovacuum_vacuum_threshold +  autovacuum_vacuum_scale_factor * pg_class.reltuples

In our case that is:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

postgres=# show autovacuum_vacuum_threshold;

 autovacuum_vacuum_threshold

-----------------------------

 50

(1 row)

 

postgres=# show autovacuum_vacuum_scale_factor;

 autovacuum_vacuum_scale_factor

--------------------------------

 0.2

(1 row)

 

postgres=# select reltuples::int from pg_class where relname = 't1';

 reltuples

-----------

   1000000

(1 row)

 

postgres=# select 50 + 0.2 * 1000000;

 ?column?

----------

 200050.0

(1 row)

This means we need to change at least 200050 rows to get autovacuum kicked in?

1

2

postgres=# update t1 set a = a + 1;

UPDATE 1000000

That should be fine as we updated all the rows in the table which is way more than 200050:

1

2

3

4

5

postgres=# select relname,last_autovacuum from pg_stat_all_tables where relname = 't1';

 relname |        last_autovacuum       

---------+-------------------------------

 t1      | 2017-10-31 07:40:56.553194+01

(1 row)

… and here we go. Now, as we know how to check that on a real table we can do the same test on temporary table:

1

2

3

4

5

6

7

8

9

postgres=# create temporary table tt1 as select * from t1;

SELECT 1000000

postgres=# update tt1 set a = a + 1;

UPDATE 1000000

postgres=# select relname,last_autovacuum from pg_stat_all_tables where relname = 'tt1';

 relname | last_autovacuum

---------+-----------------

 tt1     |

(1 row)

There is one point to consider: There is the parameter autovacuum_naptime which defaults to one minute so it might take some time until the autovacuum really did its work. But even when you wait for 10 minutes you’ll not see the last_autovacuum updated in pg_stat_all_tables for a temporary table. So, the answer is: No. There is no autovacuum on temporary tables but of course you can still do that manually:

1

2

3

4

5

postgres=# select relname,last_autovacuum, last_vacuum from pg_stat_all_tables where relname = 'tt1';

 relname | last_autovacuum |          last_vacuum         

---------+-----------------+-------------------------------

 tt1     |                 | 2017-10-31 07:50:58.041813+01

(1 row)

The same is true for the statistics used by the planner, you might need to analyze your temporary table manually:

1

2

3

4

5

6

7

8

9

10

11

12

13

postgres=# select last_analyze, last_autoanalyze from pg_stat_all_tables where relname = 'tt1';

 last_analyze | last_autoanalyze

--------------+------------------

              |

(1 row)

 

postgres=# analyze tt1;

ANALYZE

postgres=# select last_analyze, last_autoanalyze from pg_stat_all_tables where relname = 'tt1';

         last_analyze          | last_autoanalyze

-------------------------------+------------------

 2017-10-31 07:52:27.690117+01 |

(1 row)

Btw: This is clearly written in the documentation: “Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze operations should be performed via session SQL commands.”

Hope this helps …

 

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值