Performance updates and tuning best practices for using Azure Database for PostgreSQL

本文介绍Azure Database for PostgreSQL的最新性能改进,包括存储和CPU优化,以及针对不同工作负载的调优最佳实践,如自动清理、批量插入和客户端应用程序优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In March 2018 Microsoft announced general availability of Azure Database for PostgreSQL, a simple and fully managed database service for PostgreSQL that removes the complexities around infrastructure management, data availability, protection, and scale. The service continues to see tremendous growth, and in the months since Amit Banerjee's blog posting Performance best practices for using Azure Database for PostgreSQL we have added even more performance improvements to the service. In addition, through hands-on experience with customers' workloads we have determined several best practices for tuning workloads. This post describes service performance improvements and performance tuning best practices to consider based on the characteristics of your workload.  We recommend testing all these best practices because of the potential tradeoffs associated with each one.

Service improvements

The recent service improvements relate to storage and CPU optimizations resulting in faster IO latency and CPU efficiency. I/O intensive workloads and read heavy workloads will experience the most benefit from these improvements.

Tuning best practices

There are many ways to optimize your PostgreSQL database and applications for better performance. In this post, we share ideas around optimizing:

  • Autovacuum
  • Bulk inserts
  • Client applications

Optimizing autovacuum

PostgreSQL uses MVCC to allow greater database concurrency. Every update results in an insert and delete, and every delete results in the row(s) being soft-marked for deletion. This results in dead tuples that have to be purged later. PostgreSQL achieves this by running a vacuum job.

The vacuum job can be triggered manually or automatically. There will be more dead tuples when the database is experiencing heavy update or delete operations and fewer when idle, making the need for running vacuum more frequently under load. This makes running vacuum jobs manually inconvenient.

Autovacuum on the other hand, can be configured and benefits from tuning. The default values that PostgreSQL ships with try to ensure the product works on all kinds of devices including Raspberry Pis, and the ideal configuration values depend on a number of factors:

  • Total resources available - SKU and storage size.
  • Resource usage.
  • Individual object characteristics.

Visit "Optimizing autovacuum on Azure Database for PostgreSQL server" for detailed information about using, configuring, monitoring and assessing the cost of autovacuum.

References

PostgreSQL documentation – Chapter 18, Server Configuration.

PostgreSQL documentation – Chapter 24, Routine Database Maintenance Tasks.

Optimizing bulk inserts

For customers that have workload operations that involve transient data or that insert large datasets in bulk, consider using unlogged tables.

Visit "Optimizing bulk inserts and use of transient data on Azure Database for PostgreSQL server" for more detailed information about using unlogged tables.

References

PostgreSQL documentation – Create Table SQL Commands

Optimizing client applications

TCP_NODELAY

By default, TCP uses Nagle's algorithm which optimizes by batching up outgoing packets. This means fewer sends and this works well if the application sends packets frequently and latency is not the highest priority. Latency gains can be realized by sending on sockets created with the TCP_NODELAY option enabled. This results in lower latency but more sends.  TCP_NODELAY is a client-side setting that should be considered on a client Virtual Machine (VM). Applications that benefit from the TCP_NODELAY option typically tend to do smaller infrequent writes and are particularly sensitive to latency. As an example, latency can be reduced from 15-40 ms to 2-3 ms with this setting.

CPU exhaustion

If CPU usage/CPU percent for an Azure Database for PostgreSQL server is saturated at 100 percent, first use pg_stat_statements in PostgreSQL to determine which queries are taking longest. If after optimizing the long running queries CPU usage is still high, consider scaling up to the next vCore tier. For example, if the CPU usage is hovering around 100 percent consistently for General Purpose 4 vCore, scale up to a General Purpose 8 vCore.

High CPU usage is not the only indicator of CPU bottleneck. Single-threaded applications can also result in CPU exhaustion of one CPU while the other CPUs are under-utilized. Consider parallelizing your workload to take advantage of all the vCores available.

Optimizing pg_stat_statements

Visit "Optimize query statistics collection in Azure Database for PostgreSQL server" for detailed information about using pg_stat_statemetns and Query Store.

Optimizing query time with toast table storage strategy

There are four different strategies to store toast-able columns on disk representing various combinations between compression and out-of-line storage. The strategy can be set at the level of data type and at the column level.

Visit "Optimizing query time with TOAST table storage strategy" for detailed information about toast table storage strategies.

References

PostgreSQL documentation – Chapter 66, Database Physical Storage.

Acknowledgements

Special thanks to Saikat Sen, Sunil Kamath, Fady Sedrak, Raymond Martin, Sameer Arora, Kamil Kedzia, Rachel Agyemang, Harini Gupta, Jan Engelsberg, Bhavin Gandhi, Arun Sundaram and Michal Primke for their contributions to this posting.

We hope that you will take advantage of the Azure Database for PostgreSQL service. Please continue to provide feedback on the features and functionality that you want to see next. Start today by creating your free Azure account, and then create an instance of Azure Database for PostgreSQL. If you need any help or have questions, please check out the Azure Database for PostgreSQL documentation. You can also reach out to us by using the Ask Azure DB for PostgreSQL alias, and be sure to follow us on Twitter @AzureDBPostgres and #postgresql for the latest news and announcements.

内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值