最近一年我都在依赖大模型辅助工作,比如 DeepSeek、豆包、Qwen等等。线上大模型确实方便,敲几个字就能生成文案、写代码、做表格,极大提高了效率。但对于企业来说:公司内部数据敏感、使用外部大模型会有数据泄露的风险。
尤其是最近给 Rainbond 开源社区的用户答疑时,发现大家对大模型私有化部署有需求,都希望把大模型部署到企业内网,既能按需定制优化,又能保障安全合规。
网上教程虽多,但大多零散且偏向极客操作,真正能落地到生产环境的少之又少。稍微花了点时间,终于跑通了一套全链路解决方案:
- Ollama:让大模型从文件变成可运行的服务,专治模型跑不起来的千古难题。
- RKE2:RKE2 是 Rancher 推出的轻量化 K8s,比传统 K8s 节省 50% 资源,适合本地服务器。
- Rainbond:让复杂的集群管理去技术化,非运维人员也能轻松管好大模型服务。
- GPU Operator:一站式部署,显卡驱动安装零干预、容器运行时统一管理、深度集成 K8S。
这套组合对开发者和企业来说,意味着效率与安全的双重升级:开发者无需处理模型环境和集群配置,Ollama+Rainbond 让部署从 “写代码” 变成 “点鼠标”,专注业务逻辑;企业则实现数据本地化,通过 RKE2 安全策略和 Rainbond 权限管理满足合规要求,搭配 GPU Operator 提升硬件利用率,让私有化部署既简单又高效。
接下来的教程,我会从服务器准备到环境搭建再到大模型部署,拆解每个关键步骤。无论你是想搭建企业专属大模型服务,还是探索本地化 AI 应用,跟着教程走,都能少走弯路,快速落地一个安全、高效、易管理的大模型部署方案。
准备
首先需要一台干净的 GPU 服务器,推荐硬件配置如下(以 NVIDIA A100 为例):
- CPU:14 核及以上
- 内存:56GB 及以上
- GPU:NVIDIA A100(24GB 显存,支持其他 CUDA 兼容显卡,需确认GPU Operator 支持列表
- 操作系统:Ubuntu 22.04(需匹配 GPU Operator 支持的系统版本
部署 RKE2
先以单节点集群为例快速落地演示。
1. 创建 RKE2 配置
创建私有镜像仓库配置(Rainbond 默认的私有镜像仓库)
mkdir -p /etc/rancher/rke2
cat > /etc/rancher/rke2/registries.yaml << EOL
mirrors:
"goodrain.me":
endpoint:
- "https://goodrain.me"
configs:
"goodrain.me":
auth:
username: admin
password: admin1234
tls:
insecure_skip_verify: true
EOL
创建集群基础配置
cat > /etc/rancher/rke2/config.yaml << EOF
disable:
- rke2-ingress-nginx #禁用默认Ingress,会与Rainbond网关冲突
system-default-registry: registry.cn-hangzhou.aliyuncs.com # 国内镜像仓库
EOF
2. 安装并启动 RKE2
通过国内镜像加速安装,提升部署速度
# 一键安装RKE2(国内源)
curl -sfL https://rancher-mirror.rancher.cn/rke2/install.sh | INSTALL_RKE2_MIRROR=cn sh -

最低0.47元/天 解锁文章
296

被折叠的 条评论
为什么被折叠?



