多目标带宽分配与室内环境信号传播研究
1. 多目标带宽分配模型
在多目标最大最小公平(MMF)网络维度问题中,有三种顺序方法被用于分析,分别是直接有序结果(DOO)模型、累积有序结果(COO)模型和有序目标短缺(SOT)模型。
- SOT 模型特点 :SOT 方法不使用整数变量,可视为对原始约束的线性规划修改。当原始问题由凸集 A 定义时,该模型能保留问题的凸性。问题(51.15)的规模取决于不同结果值的数量,对于结果值数量不是太大的许多问题,可直接轻松求解。在电信网络设计的许多问题中,目标函数表达服务质量,可考虑相应结果值的有限尺度。此外,模型(51.15)为 MMF 问题中质量度量的模糊表示开辟了道路。
2. 计算实验
为了评估这三种模型的性能,进行了一系列计算实验。
- 问题生成 :针对每个测试规模,使用一组 10 个随机生成的问题。首先创建随机但一致的网络结构,然后选择随机节点对定义服务。对于每个服务,生成两个端节点之间的三种不同可能流路由,其中两个是完全随机的,一个是节点之间的最短路径。在有序值方法中使用整数网格的 vk 值,通过应用不同的链路容量,将目标数量限制在 5 - 10 的范围内。设置大预算限制为 B,放宽预算约束。
- 算法实现 :每个模型使用标准的顺序算法进行字典序优化,以预定义的目标函数进行计算。以字典序最大化问题为例,算法步骤如下:
1. 步骤 0:令 k := 1。
2. 步骤 1:求解问题 Pk:
- max
y2Y {k : k
超级会员免费看
订阅专栏 解锁全文
1402

被折叠的 条评论
为什么被折叠?



