基于surf特征点的图像局部图像抽取

原理

我们都知道著名的sift算法以及surf算法,但在当我们需要在海量数据中匹配点时,往往会出现很高的错误的匹配率,而且搜索算法的限制也是不可实用的方案,然而在使用其他图像特征进行搜索是比较可行的,而我们的人的眼睛在观察事物的时候也是有局部性的,使用这一特点,可搜索原图变化的图像,因为一张图,不可能全部地方都会被污染;这时候对图像进行分割是一个很重要的工作,下面就是结合surf算法的特征点来对图像进行分割的,这种做法就是冗余了太多的数据特征,但这个比google的硬分割的效果好很多

分割效果

(先看效果图:图片是某宝上的随便选取的图片)
这里写图片描述

下面这张经过裁剪和旋转变化以及污染后的图
这里写图片描述

下面是通过surf特征点进行抽取的局部小图
这里写图片描述
左半部分的小图像是经过原图变化后的抽取的局部小图像,右半部分是原图抽取的局部小图像;可以看到虽然不是全部准确的抽取了局部的小图像,这个结果还可以接受的;

分割源码


        //加载opencv本地库
        System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
        Mat src=Highgui.imread("/root/Desktop/test_c.jpg"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值