算法导论代码 第9章 中位数和顺序统计学

本文深入探讨了如何在算法中寻找最小值、最大值以及如何在期望和最坏情况下以线性时间复杂度进行选择操作。详细讲解了第9章的内容,包括9.1节的最小值和最大值的查找,9.2节介绍期望线性时间的选择方法,以及9.3节阐述最坏情况下的线性时间选择策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9章 中位数和顺序统计学

9.1 最小值和最大值

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
int minimum(int A[], int n)
{
	int min = A[0];
	for (int i = 1; i < n; i++) {
		if (min > A[i]) {
			min = A[i];
		}
	}
	return min;
}

void min_and_max(int A[], int n, int *min, int *max)
{
	int i;
	if (n % 2 == 1) {
		*min = A[0];
		*max = A[0];
		i = 1;
	} else {
		if (A[0] > A[1]) {
			*max = A[0];
			*min = A[1];
		} else {
			*max = A[1];
			*min = A[0];
		}
		i = 2;
	}
	for (; i < n; i += 2) {
		if (A[i] > A[i + 1]) {
			if (A[i] > *max) {
				*max = A[i];
			}
			if (A[i + 1] < *min) {
				*min = A[i + 1];
			}
		} else {
			if (A[i + 1] > *max) {
				*max = A[i + 1];
			}
			if (A[i] < *min) {
				*min = A[i];
			}
		}
	}
}

void print_array(int a[], int n)
{
	for (int i = 0; i < n; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}

int main()
{
	srand((unsigned)time(NULL));
	int a[10];
	for (int i = 0; i < 10; i++) {
		a[i] = rand() % 100;
	}
	print_array(a,10);
	printf("最小元素是:%d\n",minimum(a,10));
	int min;
	int max;
	min_and_max(a,10,&min,&max);
	printf("最小和最大元素是:%d,%d\n",min,max);
}


9.2 以期望线性时间做选择

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
void swap(void *a, void *b, size_t elem_size)
{
	if(a==NULL||b==NULL||a==b)
		return;
	char temp[elem_size];	/*变长数组 */
	memcpy(temp, a, elem_size);
	memcpy(a, b, elem_size);
	memcpy(b, temp, elem_size);
}
int partition(void *base, size_t elem_size, int p, int r,
	      int (*comp) (const void *, const void *))
{
	char *cbase = base;
	void *key = &cbase[r * elem_size];
	int i = p - 1;
	for (int j = p; j < r; j++) {
		if (comp(&cbase[j * elem_size], key) <= 0) {
			++i;
			swap(&cbase[i * elem_size], &cbase[j * elem_size],
			     elem_size);
		}
	}
	swap(&cbase[(i + 1) * elem_size], key, elem_size);
	return i + 1;
}

int randomized_partition(void *base, size_t elem_size, int p, int r,
			 int (*comp) (const void *, const void *))
{
	char *cbase = base;
	int i = rand() % (r - p + 1) + p;
	swap(&cbase[r * elem_size], &cbase[i * elem_size], elem_size);
	return partition(base, elem_size, p, r, comp);
}

void *randomized_select(void *base, size_t elem_size, int p, int r, int i,
			int (*comp) (const void *, const void *))
{
	char *cbase = base;
	if (p == r)
		return &cbase[p * elem_size];
	int q = randomized_partition(base, elem_size, p, r, comp);
	int k = q - p + 1;
	if (i == k) {
		return &cbase[q * elem_size];
	} else if (i < k) {
		return randomized_select(base, elem_size, p, q - 1, i, comp);
	} else {
		return randomized_select(base, elem_size, q + 1, r, i - k,
					 comp);
	}
}

void print_array(int a[], int length)
{
	for (int i = 0; i < length; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}

int cmp_int(const void *p1, const void *p2)
{
	const int *pa = p1;
	const int *pb = p2;
	if (*pa < *pb)
		return -1;
	if (*pa == *pb)
		return 0;
	return 1;
}
void randomize_quick_sort(void *base, size_t elem_size, int p, int r,
			  int (*comp) (const void *, const void *))
{
	if (p < r) {
		int q = randomized_partition(base, elem_size, p, r, comp);
		randomize_quick_sort(base, elem_size, p, q - 1, comp);
		randomize_quick_sort(base, elem_size, q + 1, r, comp);
	}
}

int main()
{
	srand((unsigned)time(NULL));
	int a[10];
	for (int i = 0; i < 10; i++) {
		a[i] = rand() % 100;
	}
	printf("原数组:\n");
	print_array(a, 10);
	int order = 3;
	int *select_value = randomized_select(a, sizeof(int), 0, 9, order, cmp_int);
	randomize_quick_sort(a, sizeof(int),0,9, cmp_int);
	printf("第%d小的元素是:%d\n", order, *select_value);
	printf("跟排序后的相应位置的值比较:%s\n",
	       *select_value == a[order - 1] ? "相等" : "不相等");
	return 0;
}


9.3 最坏情况线性时间的选择

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
void insertion_sort(void *base, size_t elem_size, size_t n,
		    int (*comp) (const void *, const void *))
{
	char *cbase = base;
	char key[elem_size];
	for (size_t i = 1; i < n; i++) {
		memcpy(key, &cbase[i * elem_size], elem_size);
		/*把base[i]插入到排好序的base[0..i-1]中 */
		int j = i - 1;
		while (j >= 0 && comp(&cbase[j * elem_size], key) > 0) {
			memcpy(&cbase[(j + 1) * elem_size],
			       &cbase[j * elem_size], elem_size);
			j--;
		}
		memcpy(&cbase[(j + 1) * elem_size], key, elem_size);
	}
}

void swap(void *a, void *b, size_t elem_size)
{
	if (a == NULL || b == NULL || a == b)
		return;
	char temp[elem_size];	/*变长数组 */
	memcpy(temp, a, elem_size);
	memcpy(a, b, elem_size);
	memcpy(b, temp, elem_size);
}

int partition(void *base, size_t elem_size, int p, int r, void *pivot,
	      int (*comp) (const void *, const void *))
{
	char *cbase = base;
	void *key = pivot;
	int i = p - 1;
	int pivot_pos = p;	/*主元的位置 */
	for (int j = p; j < r; j++) {
		if (comp(&cbase[j * elem_size], key) == 0)
			pivot_pos = j;	/*记录主元的位置 */
		if (comp(&cbase[j * elem_size], key) <= 0) {
			++i;
			swap(&cbase[i * elem_size], &cbase[j * elem_size],
			     elem_size);
		}
	}
	swap(&cbase[(i + 1) * elem_size], &cbase[pivot_pos * elem_size],
	     elem_size);
	return i + 1;
}

void *select(void *base, size_t elem_size, int p, int r, int order,
	     int (*comp) (const void *, const void *))
{
	char *cbase = base;
	if (p == r)
		return &cbase[p * elem_size];
	int n = r - p + 1;
	int array_count = n % 5 == 0 ? n / 5 : n / 5 + 1;
	char array[elem_size * array_count];
	for (int i = 0; i < array_count; i++) {
		int begin = p + i * 5;
		int end = begin + 4 < r ? begin + 4 : r;
		insertion_sort(&cbase[begin * elem_size], elem_size,
			       end - begin + 1, comp);
		int middle=begin+(end-begin)/2;
		memcpy(&array[i * elem_size], &cbase[middle * elem_size],
		       elem_size);
	}
	void *x =
	    select(array, elem_size, 0, array_count - 1, (array_count + 1) / 2,
		   comp);
	/*用求得的划分的元素x来划分数组A,保证对数组的划分是好的划分 */
	int q = partition(base, elem_size, p, r, x, comp);
	int k = q - p + 1;
	if (order == k) {
		return &cbase[q * elem_size];
	} else if (order < k) {
		return select(base, elem_size, p, q - 1, order, comp);
	} else {
		return select(base, elem_size, q + 1, r, order - k, comp);
	}
}

void print_array(int a[], int length)
{
	for (int i = 0; i < length; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}

int cmp_int(const void *p1, const void *p2)
{
	const int *pa = p1;
	const int *pb = p2;
	if (*pa < *pb)
		return -1;
	if (*pa == *pb)
		return 0;
	return 1;
}

int main()
{
	srand((unsigned)time(NULL));
	int a[10];
	for (int i = 0; i < 10; i++) {
		a[i] = rand() % 100;
	}
	printf("原数组:\n");
	print_array(a, 10);
	int order = 3;
	int *select_value = select(a, sizeof(int), 0, 9, order, cmp_int);
	insertion_sort(a, sizeof(int), 10, cmp_int);
	printf("第%d小的元素是:%d\n", order, *select_value);
	printf("跟排序后的相应位置的值比较:%s\n",
	       *select_value == a[order - 1] ? "相等" : "不相等");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值