自定义动画Animation

  创建自定义动画非常简单,只要实现他的applyTransformation的逻辑就可以了,不过通常情况下还要覆盖父类的initialize方法来实现一些初始化工作。
这里写图片描述

模拟电视机关闭效果动画

import android.graphics.Camera;
import android.graphics.Matrix;
import android.view.animation.AccelerateInterpolator;
import android.view.animation.Animation;
import android.view.animation.Transformation;

public class CustomTV extends Animation {

    private int mCenterWidth;
    private int mCenterHeight;
    private Camera mCamera = new Camera();
    private float mRotateY = 0.0f;

    @Override
    public void initialize(int width,
                           int height,
                           int parentWidth,
                           int parentHeight) {

        super.initialize(width, height, parentWidth, parentHeight);
        // 设置默认时长
        setDuration(1000);
        // 动画结束后保留状态
        setFillAfter(true);
        // 设置默认插值器
        setInterpolator(new AccelerateInterpolator());
        mCenterWidth = width / 2;
        mCenterHeight = height / 2;
    }

    // 暴露接口-设置旋转角度
    public void setRotateY(float rorateY) {
        mRotateY = rorateY;
    }

    @Override
    protected void applyTransformation(
            float interpolatedTime,
            Transformation t) {
        final Matrix matrix = t.getMatrix();
        matrix.preScale(1,
                1 - interpolatedTime,
                mCenterWidth,
                mCenterHeight);
    }
}

  关于Interpolator 时间插值类,定义动画变换的速度。能够实现alpha/scale/translate/rotate动画的加速、减速和重复等。Interpolator类其实是一个空接口,继承自TimeInterpolator,TimeInterpolator时间插值器允许动画进行非线性运动变换,如加速和限速等,该接口中只有接口中有一个方法 float getInterpolation(float input)这个方法。传入的值是一个0.0~1.0的值,返回值可以小于0.0也可以大于1.0。

AccelerateDecelerateInterpolator    动画开始与结束的地方速率改变比较慢,在中间的时候加速。
AccelerateInterpolator         动画开始的地方速率改变比较慢,然后开始加速。
AnticipateInterpolator         开始的时候向后然后向前甩。
AnticipateOvershootInterpolator    开始的时候向后然后向前甩一定值后返回最后的值。
BounceInterpolator           动画结束的时候弹起。
CycleInterpolator            动画循环播放特定的次数,速率改变沿着正弦曲线。
DecelerateInterpolator           在动画开始的地方快然后慢。
LinearInterpolator            以常量速率改变。
OvershootInterpolator          向前甩一定值后再回到原来位置。
PathInterpolator             新增的,就是可以定义路径坐标,然后可以按照路径坐标来跑动;注意其坐标并不是 XY,而是单方向,也就是我可以从0~1,然后弹回0.5 然后又弹到0.7 有到0.3,直到最后时间结束。

### 芯片的概念与计算方法 芯片(Junction Temperature, Tj)是指芯片内部发热区域的度,通常是芯片内最热的部分[^3]。由于芯片在工作时会产生热量,因此通常高于芯片表面度(Case Temperature, Tc)和环境度(Ambient Temperature, Ta)。为了确保芯片的可靠性和使用寿命,设计人员需要掌握计算方法。 #### 计算公式 可以通过以下公式进行计算: - **公式 1**: \[ T_j = T_a + P \cdot R_{ja} \] 其中: - \(T_j\):(单位:°C) - \(T_a\):环境度(单位:°C) - \(P\):芯片功耗(单位:W) - \(R_{ja}\):从到环境的热阻(单位:°C/W) - **公式 2**: \[ T_j = T_c + P \cdot R_{jc} \] 其中: - \(T_c\):芯片表面度(单位:°C) - \(R_{jc}\):从芯片表面的热阻(单位:°C/W) 上述公式适用于不同的测量条件。如果可以直接测量芯片表面度,则使用公式 2 更为准确;如果只能获取环境度,则使用公式 1 进行估算[^5]。 #### 度估算方法 在实际应用中,可以通过以下方法对芯片进行估算: 1. **热成像仪法**: 使用热成像仪测量芯片表面度 \(T_c\),并根据芯片手册中的热阻参数 \(R_{jc}\) 计算 \(T_j\)。由于到壳的热阻较大,和壳之间的差异通常较小,一般可将壳加上 10°C 左右作为的近似值[^4]。 2. **功率损耗法**: 根据芯片的实际功耗 \(P\) 和热阻参数 \(R_{ja}\) 或 \(R_{jc}\),通过公式计算。需要注意的是,实际功耗应包括驱动功率、开关损耗和导通损耗等,且通常远小于芯片手册中给出的最大耗散功率。 3. **热仿真工具**: 使用热仿真工具(如 Flotherm)可以更精确地预测芯片分布,特别是在复杂散热环境中。这种方法能够考虑更多实际因素,如气流、材料特性等[^1]。 #### 示例代码 以下是一个简单的 Python 示例,用于根据公式计算芯片: ```python def calculate_junction_temperature(Ta, P, Rja): """ 计算芯片 :param Ta: 环境度 (°C) :param P: 芯片功耗 (W) :param Rja: 到环境的热阻 (°C/W) :return: (°C) """ Tj = Ta + P * Rja return Tj # 示例参数 Ta = 25 # 环境度 (°C) P = 2.5 # 功耗 (W) Rja = 50 # 到环境的热阻 (°C/W) # 计算 Tj = calculate_junction_temperature(Ta, P, Rja) print(f"芯片为: {Tj} °C") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值