设d(i,j)d(i, j)d(i,j)表示前iii个数,模ppp为jjj的方案数,则容易得到d(0,0)=1,d(i,j)=d(i−1,j)+∑j=0p−1d(i−1,(j−a[i]) mod p)d(0, 0)=1, d(i, j)=d(i-1, j)+\sum_{j=0}^{p-1} d(i-1, (j-a[i]) \ mod \ p)d(0,0)=1,d(i,j)=d(i−1,j)+∑j=0p−1d(i−1,(j−a[i]) mod p),很多人没1a是因为没注意∣ai∣≤109|a_i| \le 10^9∣ai∣≤109
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int N=1005;
int base=1e9+7;
int f[N][N];
int a[N];
void add(int &a, int b)
{
if((a+=b)>=base) a-=base;
}
void work()
{
int i,j,n,p;
scanf("%d%d",&n,&p);
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]%=p;
}
memset(f,0,sizeof(f));
f[0][0]=1;
for(i=1;i<=n;i++)
for(j=0;j<p;j++)
{
add(f[i][j],f[(i-1)][j]);
add(f[i][j],f[(i-1)][(j-a[i]+p)%p]);
}
printf("%d\n",f[n][0]);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
work();
return 0;
}