如何查找Linux中一些特殊数据类型定义,比如pid_t和uid_t

本文详细解析了如何在Linux内核源码中查找特定类型定义的方法,通过逐步搜索sys、bits目录下的头文件,最终揭示了如pid_t、uid_t等类型与基本数据类型之间的关系。

  刚开始学习的时候看到像pid_t、uid_t这样的类型,总是想知道它的定义在哪,究竟是什么类型。但是直接看使用这些类型的函数的头文件根本就找不到。这里把我的一些经验分享给大家,希望有所帮助。

  下面以pid_t类型和getpid函数为例,getpid的定义如下:

       #include <sys/types.h>
       #include <unistd.h>

       pid_t getpid(void);
       pid_t getppid(void);

这里面有两个头文件,但是一般情况下pid_t这个类型都在sys/types.h这个头文件中,所以先到这样的头文件中找。在sys/types.h头文件中搜索pid_t,可以找到下面的语句:

#ifndef __pid_t_defined
typedef __pid_t pid_t;
# define __pid_t_defined
#endif

可以看到pid_t类型其实就是__pid_t类型,但是在sys/types.h在头文件中没有找到__pid_t这个类型,这个时候应该怎么办呢?看sys/types.h中包含的头文件,即include语句,从这些语句中选择bits/types.h这个头文件,至于为什么这就牵涉到内核的一些类型定义的规则或者叫规律,但是一般按照先sys目录然后再bits目录都没有错。在bits/types.h头文件中可以找到下面的语句:

__STD_TYPE __PID_T_TYPE __pid_t;    /* Type of process identifications.  */

也就是说__pid_t其实是__PID_T_TYPE类型,而这个类型在哪定义呢?也是先看include语句,选择bits/typesizes.h头文件,也是经验,从这个头文件中就可以找到下面的语句:

#define __PID_T_TYPE        __S32_TYPE

也就是说__PID_T_TYPE其实是__S32_TYPE类型。而这个类型在bits/typesize.h中找不到,而且这个头文件中也没有include语句,这个时候怎么办呢?还去bits/types.h中找,可以找到下面的语句:

#define __S32_TYPE      int

至此,终于找到了,pid_t其实就是int类型。

总结一下,找一个类型,一般的过程就是(比如从xxx.h开始):

xxx.h----->sys/xxx.h----->bits/xxx.h----->bits/types.h和bits/typesize.h

或者有时还要去asm目录和asm-generic目录中的头文件中找。还有一种方式就是在linux内核源码中找,但是可能某些同学感觉不爽,哈哈!

 

虽然我写这篇文章告诉你怎么找一些特殊类型,但是强烈建议初学者你不要总是这么寻根究底地查找某些类型的定义,因为这些完全没有意义,你只要知道他是什么类型就行,怎么用就可以,把跟多的精力投入到一些全局的东西,不要总是抠细节,那是在你学到一定程度之后要做的。



/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TYPES_H #define _LINUX_TYPES_H #define __EXPORTED_HEADERS__ #include <uapi/linux/types.h> #ifndef __ASSEMBLY__ #define DECLARE_BITMAP(name,bits) \ unsigned long name[BITS_TO_LONGS(bits)] typedef u32 __kernel_dev_t; typedef __kernel_fd_set fd_set; typedef __kernel_dev_t dev_t; typedef __kernel_ulong_t ino_t; typedef __kernel_mode_t mode_t; typedef unsigned short umode_t; typedef u32 nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_daddr_t daddr_t; typedef __kernel_key_t key_t; typedef __kernel_suseconds_t suseconds_t; typedef __kernel_timer_t timer_t; typedef __kernel_clockid_t clockid_t; typedef __kernel_mqd_t mqd_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_uid16_t uid16_t; typedef __kernel_gid16_t gid16_t; typedef unsigned long uintptr_t; #ifdef CONFIG_HAVE_UID16 /* This is defined by include/asm-{arch}/posix_types.h */ typedef __kernel_old_uid_t old_uid_t; typedef __kernel_old_gid_t old_gid_t; #endif /* CONFIG_UID16 */ #if defined(__GNUC__) typedef __kernel_loff_t loff_t; #endif /* * The following typedefs are also protected by individual ifdefs for * historical reasons: */ #ifndef _SIZE_T #define _SIZE_T typedef __kernel_size_t size_t; #endif #ifndef _SSIZE_T #define _SSIZE_T typedef __kernel_ssize_t ssize_t; #endif #ifndef _PTRDIFF_T #define _PTRDIFF_T typedef __kernel_ptrdiff_t ptrdiff_t; #endif #ifndef _CLOCK_T #define _CLOCK_T typedef __kernel_clock_t clock_t; #endif #ifndef _CADDR_T #define _CADDR_T typedef __kernel_caddr_t caddr_t; #endif /* bsd */ typedef unsigned char u_char; typedef unsigned short u_short; typedef unsigned int u_int; typedef unsigned long u_long; /* sysv */ typedef unsigned char unchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; #ifndef __BIT_TYPES_DEFINED__ #define __BIT_TYPES_DEFINED__ typedef u8 u_int8_t; typedef s8 int8_t; typedef u16 u_int16_t; typedef s16 int16_t; typedef u32 u_int32_t; typedef s32 int32_t; #endif /* !(__BIT_TYPES_DEFINED__) */ typedef u8 uint8_t; typedef u16 uint16_t; typedef u32 uint32_t; #if defined(__GNUC__) typedef u64 uint64_t; typedef u64 u_int64_t; typedef s64 int64_t; #endif /* this is a special 64bit data type that is 8-byte aligned */ #define aligned_u64 __aligned_u64 #define aligned_be64 __aligned_be64 #define aligned_le64 __aligned_le64 /** * The type used for indexing onto a disc or disc partition. * * Linux always considers sectors to be 512 bytes long independently * of the devices real block size. * * blkcnt_t is the type of the inode's block count. */ typedef u64 sector_t; typedef u64 blkcnt_t; /* * The type of an index into the pagecache. */ #define pgoff_t unsigned long /* * A dma_addr_t can hold any valid DMA address, i.e., any address returned * by the DMA API. * * If the DMA API only uses 32-bit addresses, dma_addr_t need only be 32 * bits wide. Bus addresses, e.g., PCI BARs, may be wider than 32 bits, * but drivers do memory-mapped I/O to ioremapped kernel virtual addresses, * so they don't care about the size of the actual bus addresses. */ #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT typedef u64 dma_addr_t; #else typedef u32 dma_addr_t; #endif typedef unsigned int __bitwise gfp_t; typedef unsigned int __bitwise slab_flags_t; typedef unsigned int __bitwise fmode_t; #ifdef CONFIG_PHYS_ADDR_T_64BIT typedef u64 phys_addr_t; #else typedef u32 phys_addr_t; #endif typedef phys_addr_t resource_size_t; /* * This type is the placeholder for a hardware interrupt number. It has to be * big enough to enclose whatever representation is used by a given platform. */ typedef unsigned long irq_hw_number_t; typedef struct { int counter; } atomic_t; #define ATOMIC_INIT(i) { (i) } #ifdef CONFIG_64BIT typedef struct { s64 counter; } atomic64_t; #endif struct list_head { struct list_head *next, *prev; }; struct hlist_head { struct hlist_node *first; }; struct hlist_node { struct hlist_node *next, **pprev; }; struct ustat { __kernel_daddr_t f_tfree; #ifdef CONFIG_ARCH_32BIT_USTAT_F_TINODE unsigned int f_tinode; #else unsigned long f_tinode; #endif char f_fname[6]; char f_fpack[6]; }; /** * struct callback_head - callback structure for use with RCU and task_work * @next: next update requests in a list * @func: actual update function to call after the grace period. * * The struct is aligned to size of pointer. On most architectures it happens * naturally due ABI requirements, but some architectures (like CRIS) have * weird ABI and we need to ask it explicitly. * * The alignment is required to guarantee that bit 0 of @next will be * clear under normal conditions -- as long as we use call_rcu() or * call_srcu() to queue the callback. * * This guarantee is important for few reasons: * - future call_rcu_lazy() will make use of lower bits in the pointer; * - the structure shares storage space in struct page with @compound_head, * which encode PageTail() in bit 0. The guarantee is needed to avoid * false-positive PageTail(). */ struct callback_head { struct callback_head *next; void (*func)(struct callback_head *head); } __attribute__((aligned(sizeof(void *)))); #define rcu_head callback_head typedef void (*rcu_callback_t)(struct rcu_head *head); typedef void (*call_rcu_func_t)(struct rcu_head *head, rcu_callback_t func); typedef void (*swap_func_t)(void *a, void *b, int size); typedef int (*cmp_r_func_t)(const void *a, const void *b, const void *priv); typedef int (*cmp_func_t)(const void *a, const void *b); #endif /* __ASSEMBLY__ */ #endif /* _LINUX_TYPES_H */
08-09
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值