Description
割耳法可以把一个多边形切成三角形:每次沿着某条对角线切下来一个三角形(称为“耳朵”),n-3次就能把一个n边形切成一个三角形。如下图,三角形{2,3,4}被割掉了。

输入一个多边形,怎样做才能让每次切割痕迹的总长度最小?
Input
输入最多包含30组测试数据。每组数据第一行为多边形的顶点数n(4<=n<=100)。以下n行描述多边形的各个顶点坐标(均为绝对值不超过10000的整数),按照逆时针或者顺时针排列。
Output
对于每组数据,输出切割痕迹总长度的最小值,保留4位小数。
Sample Input
40 03 01 10 340 010 010 10 1
Sample Output
Case 1: 1.4142Case 2: 10.0499
题意,就是将一个有n条边的多边形切n-3次,使其每部分都变成三角形。问怎样使切割总长度最小。
多边形各顶点都是按一定顺序给出的(逆时针或者顺时针)所以不必再进行极角排序。然后从任意点(这里是倒数第二个点)出发到其他与他不相邻的点进行DP。求i点到j点的最小距离,相邻两点距离可以用0表示,而图形中有不可切割的的两点距离就为INF值。
我们需要考虑什么情况下两点之间不可切割:
1、多边形的有其他顶点在ij这条切割线上。(这里模板:判断点是否在线段上)
2、多边形其他线段与ij这条切割线相交。(这里是模板:判断线段是否相交)
3、ij这条切割线不在多边形内。(这里套用了模板:判断点是否在多边形内)这个点取ij切割线的中点进行判断。
最后我们枚举完每一点到其他点最短距离之后。回到第一个点到最后一点的距离还要减去他们之间的距离。因为之前的计算已经把两者直接距离计算进去,而这个距离是不需要切割的距离,所以减去之后即题目要求的答案。
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<functional>
#define eps 1e-9
#include<vector>
const double INF=1e9;
using namespace std;
double d[200][200];
const double PI = acos(-1.0);
int dcmp( double x ){ if( abs(x) < eps ) return 0;else return x < 0?-1:1; }
struct point{
double x,y;
point( double x = 0,double y = 0 ):x(x),y(y){}
}node[112];
typedef point Vector;
struct segment{
point a,b; segment(){}
segment(point _a,point _b){a=_a,b=_b;}
};
struct circle{
point c; double r; circle(){}
circle(point _c, double _r):c(_c),r(_r) {}
point PPP(double a)const{return point(c.x+cos(a)*r,c.y+sin(a)*r);}
};
struct line{
point p,v; double ang;
line() {}
line( const point &_p, const point &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
inline bool operator < (const line &L)const{return ang < L.ang;}
};
point operator + (point a,point b){return point( a.x + b.x,a.y + b.y );}
point operator - (point a,point b){return point( a.x - b.x,a.y - b.y );}
point operator * (point a,double b){return point( a.x*b,a.y*b );}
point operator / (point a,double b){ return point( a.x/b,a.y/b );}
bool operator < (const point &a, const point &b ){return a.x < b.x || (a.x == b.x && a.y < b.y );}
bool operator == (const point &a, const point &b ){return (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0 );}
bool operator != (const point &a,const point &b ){return a == b?false:true;}
double Dot( point a,point b ){return a.x*b.x + a.y*b.y;} // 点到点的距离 //点积 ab=|a||b|cos@
double Length( point a ){return sqrt( Dot( a,a ) );} // 向量长度
double Angle( point a,point b ){ return acos( Dot(a,b)/Length(a)/Length(b) );} // 两个向量的角度
double D_T_D(const double ° ){ return deg/180.0*PI; }
// 叉积计算 a*b=|a||b|sin@;
double Cross( point a,point b ){
return a.x*b.y - a.y*b.x;
}
// 线段相交判断 先必须去掉不相交的状态;再判断方向
bool SegmentProperIntersection(const point& a1, const point& a2, const point& b1, const point& b2) {
double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1),
c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
//点pot 是否 在线段 ab 上 只需 叉积等于0 点积等于0
bool online(const point a,const point b,const point pot ){
if( Cross( a - pot,b - pot ) == 0 && Dot( a - pot,b - pot ) <= 0 )return 1;
return 0;
}
//p为点,poly为多边形 点在多边形内判定
int isinpoly(const point& p, const vector<point> poly){
int n = poly.size();
int wn = 0;
for(int i = 0; i < n; i++){
const point& p1 = poly[i];
const point& p2 = poly[(i+1)%n];
if(p1 == p || p2 == p || online(p1, p2 ,p)) return -1;
int k = dcmp(Cross(p2-p1, p-p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if(k > 0 && d1 <= 0 && d2 > 0) wn++;
if(k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1; //内部
return 0; //外部
}
bool isDgnal(const vector<point>poly, int a,int b)
{
int i,n=poly.size();
for (i=0;i<n;i++)
if (i!=a && i!=b && online(poly[a],poly[b],poly[i])) return false;
for (i=0;i<n;i++)
if (SegmentProperIntersection(poly[i],poly[(i+1)%n],poly[a],poly[b])) return false;
point mid=(poly[a]+poly[b])*0.5;
return (isinpoly(mid,poly)==1);
}
double go(const vector<point> poly)
{
int i,j,k,n=poly.size();
for (i=0;i<n;i++)
for (j=0;j<n;j++)
d[i][j]=-1;
for (i=n-2;i>=0;i--)
for (j=i+1;j<n;j++)
{
double len=Length(poly[i]-poly[j]);
if (i+1==j) d[i][j]=0;
else if (!(i==0 && j==n-1) && !isDgnal(poly,i,j)) d[i][j]=INF;
else
{
double m=INF;
for (k=i+1;k<j;k++)
m=min(m,d[i][k]+d[k][j]);
d[i][j]=len+m;
}
}
double len0=Length(poly[0]-poly[n-1]);
return d[0][n-1]-len0;
}
int main( )
{
int n,cas=1;
while (~scanf("%d",&n) && n)
{
double x,y;
vector <point> poly;
for (int i=0;i<n;i++)
{
scanf("%lf%lf",&x,&y);
poly.push_back(point(x,y));
}
printf("Case %d: %.4lf\n",cas++,go(poly));
}
}
2330

被折叠的 条评论
为什么被折叠?



