Problem
You are given two vectors v1=(x1,x2,...,xn) and v2=(y1,y2,...,yn). The scalar product of these vectors is a single number, calculated as x1y1+x2y2+...+xnyn.
Suppose you are allowed to permute the coordinates of each vector as you wish. Choose two permutations such that the scalar product of your two new vectors is the smallest possible, and output that minimum scalar product.
Input
The first line of the input file contains integer number T - the number of test cases. For each test case, the first line contains integer number n. The next two lines contain nintegers each, giving the coordinates of v1 and v2 respectively.Output
For each test case, output a line
Case #X: Ywhere X is the test case number, starting from 1, and Y is the minimum scalar product of all permutations of the two given vectors.
Limits
Small dataset
T = 1000
1 ≤ n ≤ 8
-1000 ≤ xi, yi ≤ 1000
Large dataset
T = 10
100 ≤ n ≤ 800
-100000 ≤ xi, yi ≤ 100000
Sample
题意:就是给出两个向量的坐标,比如x(x1,x2,x3...) y(y1,y2,y3)任意交换两向量之间的值,使x1*y1+x2*y2+x3*y3...的和最小。
题解就是两个排序,一个从小到大,一个从大到小相乘即是最小值。注意的是大数的时候__in64会超范围。所以用double。
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
bool cmp(double a,double b)
{
return a>b;
}
bool cmp1(double a,double b)
{
return b>a;
}
double x[1000],y[1000];
int main()
{
int T,n,i,t=0;
freopen("A-large-practice.in","r",stdin);
freopen("output.out","w",stdout);
scanf("%d",&T);
while (T--)
{
printf("Case #%d: ",++t);
scanf("%d",&n);
for (i=0;i<n;i++)
scanf("%lf",&x[i]);
for (i=0;i<n;i++)
scanf("%lf",&y[i]);
sort(x,x+n,cmp);
sort(y,y+n,cmp1);
double s=0;
for (i=0;i<n;i++)
s+=x[i]*y[i];
printf("%.0lf\n",s);
}
return 0;
}