TensorFlow Lite Model Maker

TensorFlowLiteModelMaker库提供了一种简单的方法来用自定义数据集训练TensorFlowLite模型,适用于设备上的机器学习应用。通过迁移学习,它减少了所需的数据量和训练时间。示例展示了如何在四行代码内完成图像分类任务:加载数据、定制模型、评估模型性能以及导出为TensorFlowLite模型。
部署运行你感兴趣的模型镜像

TensorFlow Lite Model Maker

TensorFlow Lite Model Maker 库,可以简化使用自定义数据集训练 TensorFlow Lite 模型的过程。该库使用迁移学习来减少所需的训练数据量并缩短训练时间。

例,图像分类,四行代码

# Load input data specific to an on-device ML app.
data = ImageClassifierDataLoader.from_folder('flower_photos/')
train_data, test_data = data.split(0.9)

# Customize the TensorFlow model.
model = image_classifier.create(train_data)

# Evaluate the model.
loss, accuracy = model.evaluate(test_data)

# Export to Tensorflow Lite model and label file in `export_dir`.
model.export(export_dir='/tmp/')

安装

pip install tflite-model-maker

cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值