Mysql or Mongodb LBS快速实现方案

本文探讨了使用Mysql和Mongodb实现地理位置服务(LBS)的快速解决方案,包括自定义存储函数和GeoHash索引方案,适用于已有业务或中小型应用新增LBS功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

               

Mysql or Mongodb LBS快速实现方案

2013年5月28日 simple 发表评论 阅读评论

前两篇文章:

查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372

微信、陌陌 架构方案分析 (http://www.wubiao.info/401

探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、redis自建索引方案。

============================================================================================

今天分享两种,利用GeoHash封装成内置数据库函数的简易方案;

A:Mysql 内置函数方案,适合于已有业务,新增加LBS功能,增加经纬度字段方可,避免数据迁移

B:Mongodb 内置函数方案,适合中小型应用,快速实现LBS功能,性能优于A(推荐)

============================================================================================

方案A: (MySQL Spatial)

1、先简历一张表:(MySQL 5.0 以上 仅支持 MyISAM 引擎)

1
2
3
4
5
6
7
8
9
CREATE TABLE address (
 
     address CHAR (80) NOT NULL ,
 
     address_loc POINT NOT NULL ,
 
     PRIMARY KEY (address)
 
);

空间索引:

1
ALTER TABLE address ADD SPATIAL INDEX (address_loc);

插入数据:(注:此处Point(纬度,经度) 标准写法)

1
2
3
INSERT INTO address VALUES ( 'Foobar street 12' , GeomFromText( 'POINT(30.620076 104.067221)' ));
 
INSERT INTO address VALUES ( 'Foobar street 13' , GeomFromText( 'POINT(31.720076 105.167221)' ));

查询: 查找(30.620076,104.067221)附近 10 公里

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SELECT  *
     FROM    address
     WHERE   MBRContains
                     (
                     LineString
                             (
                             Point
                                     (
                                     30.620076 + 10 / ( 111.1 / COS(RADIANS(104.067221))),
                                     104.067221 + 10 / 111.1
内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值