CodeForces239D 238B Boring Partition

本文探讨了如何将一个整数序列划分成两个子序列,以使子序列中元素对的最大值与最小值之差(好度)最小化的问题。通过分析发现,最优解通常涉及将最小元素单独分组或所有元素置于同一组。文章提供了详细的算法实现,包括输入输出示例和代码。

This problem is the most boring one you've ever seen.

Given a sequence of integers a1, a2, ..., an and a non-negative integer h, our goal is to partition the sequence into two subsequences (not necessarily consist of continuous elements). Each element of the original sequence should be contained in exactly one of the result subsequences. Note, that one of the result subsequences can be empty.

Let's define function f(ai, aj) on pairs of distinct elements (that is i ≠ j) in the original sequence. If ai and aj are in the same subsequence in the current partition then f(ai, aj) = ai + aj otherwise f(ai, aj) = ai + aj + h.

Consider all possible values of the function f for some partition. We'll call the goodness of this partiotion the difference between the maximum value of function f and the minimum value of function f.

Your task is to find a partition of the given sequence a that have the minimal possible goodness among all possible partitions.

Input

The first line of input contains integers n and h (2 ≤ n ≤ 105, 0 ≤ h ≤ 108). In the second line there is a list of n space-separated integers representing a1, a2, ..., an (0 ≤ ai ≤ 108).

Output

The first line of output should contain the required minimum goodness.

The second line describes the optimal partition. You should print n whitespace-separated integers in the second line. The i-th integer is 1 if ai is in the first subsequence otherwise it should be 2.

If there are several possible correct answers you are allowed to print any of them.

Examples

Input

3 2
1 2 3

Output

1
1 2 2 

Input

5 10
0 1 0 2 1

Output

3
2 2 2 2 2 

Note

In the first sample the values of f are as follows: f(1, 2) = 1 + 2 + 2 = 5, f(1, 3) = 1 + 3 + 2 = 6 and f(2, 3) = 2 + 3 = 5. So the difference between maximum and minimum values of f is 1.

In the second sample the value of h is large, so it's better for one of the sub-sequences to be empty.

题解:被赵贤气的  看到这个题 我竟然模拟了起来  其实稍加考虑就能想到 要得到最小  只能是 最小的那个 自己在一组 或者  全部都在一组  两种情况取个小的就可以了  因为 如果在拿一个和最小的放在一组 取最小值的可能就会更小 取最大值的可能就会更大

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,m;
struct node{
	int x,id;
	int val;
}a[N];
bool cmp(node x,node y)
{
	return x.x>y.x;
}
bool cmp_(node x,node y)
{
	return x.id<y.id;
}
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		for(int i=1;i<=n;i++) scanf("%d",&a[i].x),a[i].id=i,a[i].val=0;
		sort(a+1,a+1+n,cmp);
		if(n==2) printf("0\n1 1\n");
		else
		{
			if(max(a[1].x+a[2].x,a[1].x+a[n].x+m)-min(a[n].x+a[n-1].x+m,a[n-1].x+a[n-2].x)<a[1].x+a[2].x-a[n].x-a[n-1].x)
				a[n].val=1;
			cout<<min(max(a[1].x+a[2].x,a[1].x+a[n].x+m)-min(a[n].x+a[n-1].x+m,a[n-1].x+a[n-2].x),a[1].x+a[2].x-a[n].x-a[n-1].x)<<endl;
			sort(a+1,a+1+n,cmp_);
			for(int i=1;i<=n;i++)
				printf("%d%c",a[i].val==0?2:a[i].val," \n"[i==n]);
		}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值