题目链接:https://codeforces.com/contest/1080/problem/F
题意:有k个线段所属在n个集合中,每次询问a b x y,问是否[a, b]的每个集合中都存在一个线段在[x, y]的范围内
题解:按照每个线段的有区间排序,然后按照右区间建立主席树,每个节点保存该位置的最右左区间,然后查询的时候即为对应所有位置的最右左区间的最小值,看是否大于x
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int N = 3e5 + 10;
struct node1 {
int l, r, id;
bool operator <(const node1 &bb) const {
return r < bb.r;
}
}a[N];
struct node {
int l, r;
int val;
}tree[N * 22];
int n, m, k;
int b[N], len;
int root[N], tot;
int update(int pre, int l, int r, int pos, int val) {
int cur = ++tot;
tree[cur] = tree[pre];
if(l == r) {
// cout << l << " -- " << val << endl;
tree[cur].val = max(tree[cur].val, val);
return cur;
}
int mid = (l + r) >> 1;
if(pos <= mid) tree[cur].l = update(tree[pre].l, l, mid, pos, val);
else tree[cur].r = update(tree[pre].r, mid + 1, r, pos, val);
tree[cur].val = min(tree[tree[cur].l].val, tree[tree[cur].r].val);
return cur;
}
int query(int rt, int l, int r, int pl, int pr) {
if(pl <= l && r <= pr) return tree[rt].val;
int res = INF;
int mid = (l + r) >> 1;
if(pl <= mid) res = min(res, query(tree[rt].l, l, mid, pl, pr));
if(pr >= mid + 1) res = min(res, query(tree[rt].r, mid +1, r, pl, pr));
return res;
}
string s[2];
int main() {
s[0] = "yes";
s[1] = "no";
scanf("%d %d %d", &n, &m, &k);
for(int i = 1; i <= k; i++) {
scanf("%d %d %d", &a[i].l, &a[i].r, &a[i].id);
b[i] = a[i].r;
}
sort(a + 1, a + 1 + k);
sort(b + 1, b + 1 + k);
for(int i = 1; i <= k; i++) {
// cout << a[i].id << " " << a[i].l <<endl;
root[i] = update(root[i - 1], 1, n, a[i].id, a[i].l);
}
len = k;
int pos;
int l, r, x, y;
while(m--) {
scanf("%d %d %d %d", &l, &r, &x, &y);
pos = upper_bound(b + 1, b + 1 + len, y) - b;
pos--;
// cout << pos << endl;
if(query(root[pos], 1, n, l, r) >= x) cout << "yes" << endl;;
else cout << "no" << endl;;
}
return 0;
}
本文详细解析了Codeforces 1080F题目的解题思路,通过将线段按区间排序并使用主席树,实现了高效查询每个集合中是否存在线段覆盖指定范围的功能。
188

被折叠的 条评论
为什么被折叠?



