第十二周项目1—图基本算法库

本文介绍了一个图算法库的实现,包括定义图的邻接矩阵和邻接表存储结构,实现从数组到邻接矩阵和邻接表的转换,以及二者之间的相互转换。通过具体的代码示例展示了这些操作的具体实现。
 copyright (c) 2016,烟台大学计算机学院 
 All rights reserved. 
 文件名称:1.cpp 
 作者:孟令康
 完成日期:2016年9月12日 
 版本号:v1.0 
 问题描述:定义图的邻接矩阵和邻接表存储结构,实现其基本运算,并完成测试。    
     要求:   
          1、头文件graph.h中定义相关的数据结构并声明用于完成基本运算的函数。对应基本运算的函数包括:   
          void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵  
          void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表  
          void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G  
          void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g  
          void DispMat(MGraph g);//输出邻接矩阵g  
          void DispAdj(ALGraph *G);//输出邻接表G      
          2、在graph.cpp中实现这些函数  
          3、用main.cpp中的main函数中完成测试。     
 输入描述: 无   
 程序输出: 测试数据    

 代码

main.cpp:

#include <stdio.h>
#include "graph.h"    
int main()    
{    
    MGraph g1,g2;    
    ALGraph *G1,*G2;    
    int A[6][6]=    
    {    
        {0,5,0,7,0,0},    
        {0,0,4,0,0,0},    
        {8,0,0,0,0,9},    
        {0,0,5,0,0,6},    
        {0,0,0,5,0,0},    
        {3,0,0,0,1,0}    
    };    
     ArrayToMat(A[0], 6, g1);  //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配    
    printf(" 有向图g1的邻接矩阵:\n");    
    DispMat(g1);    
    ArrayToList(A[0], 6, G1);    
    printf(" 有向图G1的邻接表:\n");    
    DispAdj(G1);    
    MatToList(g1,G2);    
    printf(" 图g1的邻接矩阵转换成邻接表G2:\n");    
    DispAdj(G2);    
    ListToMat(G1,g2);    
    printf(" 图G1的邻接表转换成邻接邻阵g2:\n");    
    DispMat(g2);    
    printf("\n");    
    return 0;    
}  

graph.h:

#ifndef GRAPH_H_INCLUDED    
#define GRAPH_H_INCLUDED    
#include <stdio.h>    
#include <malloc.h>    
#define MAXV 100                //最大顶点个数    
#define INF 32767       //INF表示∞    
typedef int InfoType;    
  
//以下定义邻接矩阵类型    
typedef struct    
{    
    int no;                     //顶点编号    
    InfoType info;              //顶点其他信息,在此存放带权图权值    
} VertexType;                   //顶点类型    
typedef struct                  //图的定义    
{    
    int edges[MAXV][MAXV];      //邻接矩阵    
    int n,e;                    //顶点数,弧数    
    VertexType vexs[MAXV];      //存放顶点信息    
} MGraph;                       //图的邻接矩阵类型    
//以下定义邻接表类型    
typedef struct ANode            //弧的结点结构类型    
{    
    int adjvex;                 //该弧的终点位置    
    struct ANode *nextarc;      //指向下一条弧的指针    
    InfoType info;              //该弧的相关信息,这里用于存放权值    
} ArcNode;    
typedef int Vertex;    
typedef struct Vnode            //邻接表头结点的类型    
{    
    Vertex data;                //顶点信息    
    int count;                  //存放顶点入度,只在拓扑排序中用    
    ArcNode *firstarc;          //指向第一条弧    
} VNode;    
typedef VNode AdjList[MAXV];    //AdjList是邻接表类型    
typedef struct    
{    
    AdjList adjlist;            //邻接表    
    int n,e;                    //图中顶点数n和边数e    
} ALGraph;                      //图的邻接表类型    
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图    
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)    
//      n - 矩阵的阶数    
//      g - 要构造出来的邻接矩阵数据结构    
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵    
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表    
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G    
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g    
void DispMat(MGraph g);//输出邻接矩阵g    
void DispAdj(ALGraph *G);//输出邻接表G    
#endif // GRAPH_H_INCLUDED  

graph.cpp:

#include <stdio.h>
#include "graph.h"    
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图    
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)    
//      n - 矩阵的阶数    
//      g - 要构造出来的邻接矩阵数据结构    
void ArrayToMat(int *Arr, int n, MGraph &g)    
{    
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数    
    g.n=n;    
    for (i=0; i<g.n; i++)    
        for (j=0; j<g.n; j++)    
        {    
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用    
            if(g.edges[i][j]!=0)    
                count++;    
        }    
    g.e=count;    
}    
  
void ArrayToList(int *Arr, int n, ALGraph *&G)    
{    
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数    
    ArcNode *p;    
    G=(ALGraph *)malloc(sizeof(ALGraph));    
    G->n=n;    
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值    
        G->adjlist[i].firstarc=NULL;    
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素    
        for (j=n-1; j>=0; j--)    
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]    
            {    
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p    
                p->adjvex=j;    
                p->info=Arr[i*n+j];    
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p    
                G->adjlist[i].firstarc=p;    
            }    
    G->e=count;    
}    
  
void MatToList(MGraph g, ALGraph *&G)    
//将邻接矩阵g转换成邻接表G    
{    
    int i,j;    
    ArcNode *p;    
    G=(ALGraph *)malloc(sizeof(ALGraph));    
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值    
        G->adjlist[i].firstarc=NULL;    
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素    
        for (j=g.n-1; j>=0; j--)    
            if (g.edges[i][j]!=0)       //存在一条边    
            {    
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p    
                p->adjvex=j;    
                p->info=g.edges[i][j];    
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p    
                G->adjlist[i].firstarc=p;    
            }    
    G->n=g.n;    
    G->e=g.e;    
}    
  
void ListToMat(ALGraph *G,MGraph &g)    
//将邻接表G转换成邻接矩阵g    
{    
    int i,j;    
    ArcNode *p;    
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵    
        for (j=0; j<g.n; j++)    
            g.edges[i][j]=0;    
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值    
    {    
        p=G->adjlist[i].firstarc;    
        while (p!=NULL)    
        {    
            g.edges[i][p->adjvex]=p->info;    
            p=p->nextarc;    
        }    
    }    
    g.n=G->n;    
    g.e=G->e;    
}    
  
  
  
  
void DispMat(MGraph g)    
//输出邻接矩阵g    
{    
    int i,j;    
    for (i=0; i<g.n; i++)    
    {    
        for (j=0; j<g.n; j++)    
            if (g.edges[i][j]==INF)    
                printf("%3s","∞");    
            else    
                printf("%3d",g.edges[i][j]);    
        printf("\n");    
    }    
}    
  
  
  
  
void DispAdj(ALGraph *G)    
//输出邻接表G    
{    
    int i;    
    ArcNode *p;    
    for (i=0; i<G->n; i++)    
    {    
        p=G->adjlist[i].firstarc;    
        printf("%3d: ",i);    
        while (p!=NULL)    
        {    
            printf("-->%d/%d ",p->adjvex,p->info);    
            p=p->nextarc;    
        }    
        printf("\n");    
    }    
}  
运行结果:


知识点总结:

       图基本算法库。

学习心得:

       图算法库在生活中非常实用。

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
标题中的"EthernetIP-master.zip"压缩文档涉及工业自动化领域的以太网通信协议EtherNet/IP。该协议由罗克韦尔自动化公司基于TCP/IP技术架构开发,已广泛应用于ControlLogix系列控制设备。该压缩包内可能封装了协议实现代码、技术文档或测试工具等核心组件。 根据描述信息判断,该资源主要用于验证EtherNet/IP通信功能,可能包含测试用例、参数配置模板及故障诊断方案。标签系统通过多种拼写形式强化了协议主题标识,其中"swimo6q"字段需结合具体应用场景才能准确定义其技术含义。 从文件结构分析,该压缩包采用主分支命名规范,符合开源项目管理的基本特征。解压后预期可获取以下技术资料: 1. 项目说明文档:阐述开发目标、环境配置要求及授权条款 2. 核心算法源码:采用工业级编程语言实现的通信协议栈 3. 参数配置文件:预设网络地址、通信端口等连接参数 4. 自动化测试套件:包含协议一致性验证和性能基准测试 5. 技术参考手册:详细说明API接口规范与集成方法 6. 应用示范程序:展示设备数据交换的标准流程 7. 工程构建脚本:支持跨平台编译和部署流程 8. 法律声明文件:明确知识产权归属及使用限制 该测试平台可用于构建协议仿真环境,验证工业控制器与现场设备间的数据交互可靠性。在正式部署前开展此类测试,能够有效识别系统兼容性问题,提升工程实施质量。建议用户在解压文件后优先查阅许可协议,严格遵循技术文档的操作指引,同时需具备EtherNet/IP协议栈的基础知识以深入理解通信机制。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值