《统计学习方法》(第七章)—— 支持向量机

本文详细介绍了支持向量机相关知识。包括线性可分支持向量机的定义、函数间隔和几何间隔、间隔最大化及对偶算法;线性支持向量机的软间隔最大化;非线性支持向量机的核技巧与常用核函数;还阐述了序列最小最优化算法,含变量选择和求解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性可分支持向量机与硬间隔最大化

线性可分支持向量机

  • 定义:给定线性可分训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为
    w∗⋅x+b∗=0w^* \cdot x +b^*=0wx+b=0
    以及相应的分类决策函数
    f(x)=sign(w∗⋅x+b∗)f(x)=sign(w^* \cdot x +b^*)f(x)=sign(wx+b)
    称为线性可分支持向量机.

函数间隔和几何间隔

  • 函数间隔定义:对于给定的训练数据集T和超平面(w,b)(w,b)(w,b)定义超平面(w,b)(w,b)(w,b)关于样本点(xi,yi)(x_i,y_i)(xi,yi)的函数间隔为
    γ^i=yi(w⋅xi+b)\hat{\gamma}_i=y_i(w \cdot x_i+b)γ^i=yi(wxi+b)
    定义超平面(w,b)(w,b)(w,b)关于训练数据集TTT的函数间隔为超平面(w,b)(w,b)(w,b)关于TTT中所有样本点(xi,yi)(x_i,y_i)(xi,yi)的函数间隔最小值
    γ^=min⁡i=1,...,Nγ^i\hat{\gamma}=\min\limits_{i=1,...,N}\hat{\gamma}_iγ^=i=1,...,Nminγ^i
  • 几何间隔定义:对于给定的训练数据集TTT和超平面(w,b)(w,b)(w,b),定义超平面(w,b)(w,b)(w,b)关于样本点(xi,yi)(x_i,y_i)(xi,yi)的几何间隔为
    γi=yi(w∣∣w∣∣⋅xi+b∣∣w∣∣)\gamma_i=y_i(\frac{w}{||w||}\cdot x_i+\frac{b}{||w||})γi=yi(wwxi+wb)
    定义超平面(w,b)(w,b)(w,b)关于训练数据集TTT的几何间隔为超平面(w,b)(w,b)(w,b)关于TTT中所有样本点(xi,yi)(x_i,y_i)(xi,yi)的几何间隔最小
    γ=min⁡i=1,...,Nγi{\gamma}=\min\limits_{i=1,...,N}{\gamma}_iγ=i=1,...,Nminγi
    于是我们有
    γi=γi^∣∣w∣∣{\gamma}_i=\frac{\hat{\gamma_i}}{||w||}γi=wγi^
    γ=γ^∣∣w∣∣{\gamma}=\frac{\hat{\gamma}}{||w||}γ=wγ^

间隔最大化

最大间隔超平面为
                                      max⁡w,b γ\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \max\limits_{w,b} \ \gamma                                      w,bmax γ
                                      s.t.    yi(w∣∣w∣∣+b∣∣w∣∣)≥γ,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i(\frac{w}{||w||}+\frac{b}{||w||})\ge \gamma, i=1,2,...,N                                      s.t.    yi(ww+wb)γ,i=1,2,...,N
等价于
                                      max⁡w,b γ^∣∣w∣∣\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \max\limits_{w,b} \ \frac{\hat{\gamma}}{||w||}                                      w,bmax wγ^
                                      s.t.    yi(w+b)≥γ^,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})\ge \hat{\gamma}, i=1,2,...,N                                      s.t.    yi(w+b)γ^,i=1,2,...,N
因为γ^\hat{\gamma}γ^取值无所谓,我们取γ^=1\hat{\gamma}=1γ^=1
则最终等价于
                                      min⁡w,b 12∣∣w∣∣2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \frac{1}{2}||w||^2                                      w,bmin 21w2
                                      s.t.    yi(w+b)−1≥0,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})-1 \ge0, i=1,2,...,N                                      s.t.    yi(w+b)10,i=1,2,...,N
这是一个凸优化问题

最终算法

输入:线性可分训练数据集T={(x1,y1),(x2,y2),...,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}T={(x1,y1),(x2,y2),...,(xN,yN)}其中xi∈Rn,yi∈{−1,+1},i=1,2,...,Nx_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,NxiRn,yi{1,+1},i=1,2,...,N
输出:最大间隔分离超平面和分类函数

(1)(1)(1)构造优化问题
                                     min⁡w,b 12∣∣w∣∣2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \frac{1}{2}||w||^2                                     w,bmin 21w2
                                      s.t.    yi(w+b)−1≥0,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})-1 \ge0, i=1,2,...,N                                      s.t.    yi(w+b)10,i=1,2,...,N
(2)(2)(2)得到分类超平面
w∗⋅x+b∗=0w^* \cdot x+b^*=0wx+b=0
以及分类决策函数
f(x)=sign(w∗⋅x+b∗)f(x)=sign(w^* \cdot x+b^*)f(x)=sign(wx+b)

  • 最大间隔分离超平面存在且唯一性证明:
    (1)(1)(1)存在性
    由于数据线性可分,必然存在可行解,又由于目标函数有下界,所以最优解必然存在,记(w∗,b∗)(w^*,b^*)(w,b)又因为数据中存在正负样本,所以w∗≠0w^* \ne 0w=0,存在性得证
    (2)(2)(2)唯一性
    首先证明w∗w^*w唯一.假设有两个最优解(w1∗,b1∗)(w_1^*,b_1^*)(w1,b1)(w2∗,b2∗)(w_2^*,b_2^*)(w2,b2)显然∣∣w1∗∣∣=∣∣w2∗∣∣=c||w_1^*||=||w_2^*||=cw1=w2=c
    w=w1∗+w2∗2,b=b1∗+b2∗2w=\frac{w_1^*+w_2^*}{2},b=\frac{b_1^*+b_2^*}{2}w=2w1+w2,b=2b1+b2,则c≤∣∣w∣∣≤12∣∣w1∗∣∣+12∣∣w2∗∣∣=c,c\le||w||\le\frac{1}{2}||w_1^*||+\frac{1}{2}||w_2^*||=c,cw21w1+21w2=c,所以∣∣w∣∣=12∣∣w1∗∣∣+12∣∣w2∗∣∣||w||=\frac{1}{2}||w_1^*||+\frac{1}{2}||w_2^*||w=21w1+21w2
    从而∣∣w1∗∣∣=λ∣∣w2∗∣∣||w_1^*||=\lambda||w_2^*||w1=λw2,∣λ∣=1|\lambda|=1λ=1如果λ=−1\lambda=-1λ=1,则∣∣w∣∣=0||w||=0w=0矛盾,如果 λ=1\lambda=1λ=1,则∣∣w1∗∣∣=∣∣w2∗∣∣||w_1^*||=||w_2^*||w1=w2矛盾,所以w∗w^*w唯一
    再证b∗b^*b
    x1‘,x2‘x_1^`,x_2^`x1,x2为集合{xi∣yi=+1}\{x_i|y_i=+1\}{xiyi=+1}中分别对应(w∗,b1∗)(w^*,b_1^*)(w,b1)(w∗,b2∗)(w^*,b_2^*)(w,b2)成立的点
    x1‘‘,x2‘‘x_1^{``},x_2^{``}x1,x2为集合{xi∣yi=−1}\{x_i|y_i=-1\}{xiyi=1}中分别对应(w∗,b1∗)(w^*,b_1^*)(w,b1)(w∗,b2∗)(w^*,b_2^*)(w,b2)成立的点
    b1∗=−12(w∗⋅x1′+w∗⋅x1′′),b2∗=−12(w∗⋅x2′+w∗⋅x2′′)b_1^*=-\frac{1}{2}(w^* \cdot x_1^{'}+w^* \cdot x_1^{''}),b_2^*=-\frac{1}{2}(w^* \cdot x_2^{'}+w^* \cdot x_2^{''})b1=21(wx1+wx1),b2=21(wx2+wx2)
    b1∗−b2∗=−12[w∗⋅(x1′−x2′)+w∗⋅(x1′′−x2′′)]b_1^*-b_2^*=-\frac{1}{2}[w^*\cdot (x_1^{'}-x_2^{'})+w^*\cdot (x_1^{''}-x_2^{''})]b1b2=21[w(x1x2)+w(x1x2)]

    w∗⋅x2′+b1∗≥1=w∗⋅x1′+b1∗w^* \cdot x_2^{'}+b_1^* \ge 1=w^* \cdot x_1^{'}+b_1^*wx2+b11=wx1+b1
    w∗⋅x1′+b1∗≥1=w∗⋅x2′+b2∗w^* \cdot x_1^{'}+b_1^* \ge 1=w^* \cdot x_2^{'}+b_2^*wx1+b11=wx2+b2
    所以w∗⋅(x1′−x2′)=0w^* \cdot(x_1^{'}-x_2^{'})=0w(x1x2)=0,同理w∗⋅(x1′‘−x2′’)=0w^* \cdot(x_1^{'‘}-x_2^{'’})=0w(x1x2)=0
    所以b1∗=b2∗b_1^*=b_2^*b1=b2成立.
  • 支持向量和间隔边界
    满足w⋅xi+b=yiw \cdot x_i+b=y_iwxi+b=yi的点称为支持向量
    H1:w⋅xi+b=+1H_1:w \cdot x_i+b=+1H1:wxi+b=+1
    H2:w⋅xi+b=−1H_2:w \cdot x_i+b=-1H2:wxi+b=1
    H1和H2H_1和H_2H1H2之间的宽度为2∣∣w∣∣\frac{2}{||w||}w2为间隔边界

学习的对偶算法

对优化问题求解,首先定义拉格朗日函数
L(w,b,a)=12∣∣w∣∣2−∑i=1Naiyi(w⋅xi+b)+∑i=1Nai,L(w,b,a)=\frac{1}{2}||w||^2-\sum\limits_{i=1}^Na_iy_i(w \cdot x_i+b)+\sum\limits_{i=1}^Na_i,L(w,b,a)=21w2i=1Naiyi(wxi+b)+i=1Nai,其中ai≥0,i=1,2,...,Na_i \ge0,i=1,2,...,Nai0,i=1,2,...,N
定义a=(a1,a2,...,aN)Ta=(a_1,a_2,...,a_N)^Ta=(a1,a2,...,aN)T
则原问题等价于
max⁡amin⁡w,bL(w,b,a)\max\limits_a\min\limits_{w,b}L(w,b,a)amaxw,bminL(w,b,a)
(1)(1)(1)min⁡w,bL(w,b,a)\min\limits_{w,b}L(w,b,a)w,bminL(w,b,a)w,bw,bw,b偏导数等于0
∇wL(w,b,a)=w−∑i=1Naiyixi=0\nabla_wL(w,b,a)=w-\sum\limits_{i=1}^Na_iy_ix_i=0wL(w,b,a)=wi=1Naiyixi=0
∇bL(w,b,a)=−∑i=1Naiyi=0\nabla_bL(w,b,a)=-\sum\limits_{i=1}^Na_iy_i=0bL(w,b,a)=i=1Naiyi=0

w=∑i=1Naiyixiw=\sum\limits_{i=1}^Na_iy_ix_iw=i=1Naiyixi
∑i=1Naiyi=0\sum\limits_{i=1}^Na_iy_i=0i=1Naiyi=0
代入得
L(w,b,a)=12∑i=1N∑j=1Naiajyiyj(xi⋅xj)−∑i=1Naiyi((∑j=1Najyjxj)⋅xi+b+∑i=1Nai)L(w,b,a)=\frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_iy_i\Bigg((\sum\limits_{j=1}^Na_jy_jx_j)\cdot x_i +b+\sum\limits_{i=1}^Na_i\Bigg)L(w,b,a)=21i=1Nj=1Naiajyiyj(xixj)i=1Naiyi((j=1Najyjxj)xi+b+i=1Nai)

=−12∑i=1N∑j=1Naiajyiyj(xi⋅xj)+∑i=1Nai=-\frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)+\sum\limits_{i=1}^Na_i=21i=1Nj=1Naiajyiyj(xixj)+i=1Nai

(2)(2)(2)
                                      min⁡a 12∑i=1N∑j=1Naiajyiyj(xi⋅xj)−∑i=1Nai\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i                                      amin 21i=1Nj=1Naiajyiyj(xixj)i=1Nai
                                      s.t.  ∑i=1Naiyi=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0                                      s.t.  i=1Naiyi=0
                                      ai≥0,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_i\ge 0,i=1,2,...,N                                      ai0,i=1,2,...,N



w∗=∑i=1Nai∗yixiw^*=\sum\limits_{i=1}^Na_i^*y_ix_iw=i=1Naiyixi
b∗=yi−∑i=1Nai∗yi(xi⋅xj),ai>0b^*=y_i-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_i>0b=yii=1Naiyi(xixj),ai>0
f(x)=sign(∑i=1Nai∗yi(x⋅xi)+b∗)f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*)f(x)=sign(i=1Naiyi(xxi)+b)
算法
输入:线性可分训练集T={(x1,y1),(x2,y2),...,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}T={(x1,y1),(x2,y2),...,(xN,yN)},其中xi∈Rn,yi∈{−1,+1},i=1,2,...,Nx_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,NxiRn,yi{1,+1},i=1,2,...,N
输出:分离超平面和分类决策函数
(1)(1)(1)
                                      min⁡a 12∑i=1N∑j=1Naiajyiyj(xi⋅xj)−∑i=1Nai\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i                                      amin 21i=1Nj=1Naiajyiyj(xixj)i=1Nai
                                      s.t.  ∑i=1Naiyi=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0                                      s.t.  i=1Naiyi=0
                                      ai≥0,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_i\ge 0,i=1,2,...,N                                      ai0,i=1,2,...,N
求解a∗a^*a
(2)(2)(2)计算
w∗=∑i=1Nai∗yixiw^*=\sum\limits_{i=1}^Na_i^*y_ix_iw=i=1Naiyixi
b∗=yj−∑i=1Nai∗yi(xi⋅xj),aj>0b^*=y_j-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_j>0b=yji=1Naiyi(xixj),aj>0

(3)(3)(3)求得分类超平面
f(x)=sign(∑i=1Nai∗yi(x⋅xi)+b∗)f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*)f(x)=sign(i=1Naiyi(xxi)+b)

线性支持向量机与软间隔最大化

线性支持向量机

  • 定义 给定线性不可分的训练数据集,通过求解凸二次规划问题,即软间隔最大化,得到分离超平面为
    w∗⋅x+b∗=0w^* \cdot x+b^*=0wx+b=0
    以及决策分类函数
    f(x)=sign(w∗⋅x+b∗)f(x)=sign(w^* \cdot x+b^*)f(x)=sign(wx+b)
    称为线性支持向量机,

    改变约束条件为
    yi(w⋅xi+b)≥1−ξi,ξi≥0y_i(w \cdot x_i+b)\ge 1-\xi_i,\xi_i\ge0yi(wxi+b)1ξi,ξi0
    目标函数为
    12∣∣w∣∣2+C∑i=1Nξi,C>0\frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i,C>021w2+Ci=1Nξi,C>0
    最终为
    min⁡w,b   12∣∣w∣∣2+C∑i=1Nξi                          \min\limits_{w,b} \ \ \ \frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w,bmin   21w2+Ci=1Nξi                         
    s.t.    yi(w+b)≥1−ξi,i=1,2,...,N s.t. \ \ \ \ y_i({w}+{b}) \ge1-\xi_i, i=1,2,...,Ns.t.    yi(w+b)1ξi,i=1,2,...,N

学习的对偶算法

根据对偶原理
L(w,b,ξ,a,μ)=12∣∣w∣∣2+C∑i=1Nξi−∑i=1Nai(yi(w⋅xi+b)−1+ξi)−∑i=1Nμiξi,               ξi≥0,μi≥0L(w,b,\xi,a,\mu)=\frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i-\sum\limits_{i=1}^Na_i(y_i(w \cdot x_i+b)-1+\xi_i)-\sum_{i=1}^N\mu_i\xi_i,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \xi_i \ge0,\mu_i\ge0L(w,b,ξ,a,μ)=21w2+Ci=1Nξii=1Nai(yi(wxi+b)1+ξi)i=1Nμiξi,               ξi0,μi0
∇wL(w,b,ξ,a,μ)=w−∑i=1Naiyixi=0\nabla_wL(w,b,\xi,a,\mu)=w-\sum\limits_{i=1}^Na_iy_ix_i=0wL(w,b,ξ,a,μ)=wi=1Naiyixi=0
∇bL(w,b,ξ,a,μ)=−∑i=1Naiyi=0\nabla_bL(w,b,\xi,a,\mu)=-\sum\limits_{i=1}^Na_iy_i=0bL(w,b,ξ,a,μ)=i=1Naiyi=0
∇ξiL(w,b,ξ,a,μ)=C−ai−μi=0\nabla_{\xi_i}L(w,b,\xi,a,\mu)=C-a_i-\mu_i=0ξiL(w,b,ξ,a,μ)=Caiμi=0
代入原式中得
                                 min⁡w,b   12∑i=1N∑j=1Naiajyiyj(xi⋅xj)−∑i=1Nai      \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \ \ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i \ \ \ \ \                                  w,bmin   21i=1Nj=1Naiajyiyj(xixj)i=1Nai     
s.t.            ∑i=1Naiyi=0 s.t. \ \ \ \ \ \ \ \ \ \ \ \ \sum\limits_{i=1}^Na_iy_i=0s.t.            i=1Naiyi=0
      0≤ai≤C,i=1,2,...,N \ \ \ \ \ \ 0\le a_i\le C,i=1,2,...,N      0aiC,i=1,2,...,N
其中
w∗=∑i=1Nai∗yixiw^*=\sum\limits_{i=1}^Na_i^*y_ix_iw=i=1Naiyixi
b∗=yj−∑i=1Nyiai∗(xi⋅xj),0<aj∗<Cb^*=y_j-\sum\limits_{i=1}^Ny_ia_i^*(x_i \cdot x_j),0<a_j^*<Cb=yji=1Nyiai(xixj),0<aj<C
算法:
输入:线性可分训练集T={(x1,y1),(x2,y2),...,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}T={(x1,y1),(x2,y2),...,(xN,yN)},其中xi∈Rn,yi∈{−1,+1},i=1,2,...,Nx_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,NxiRn,yi{1,+1},i=1,2,...,N
输出:分离超平面和分类决策函数
(1)(1)(1)
                                      min⁡a 12∑i=1N∑j=1Naiajyiyj(xi⋅xj)−∑i=1Nai\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i                                      amin 21i=1Nj=1Naiajyiyj(xixj)i=1Nai
                                      s.t.  ∑i=1Naiyi=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0                                      s.t.  i=1Naiyi=0
                                      0≤ai≤C,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i\le C,i=1,2,...,N                                      0aiC,i=1,2,...,N
求解a∗a^*a
(2)(2)(2)计算
w∗=∑i=1Nai∗yixiw^*=\sum\limits_{i=1}^Na_i^*y_ix_iw=i=1Naiyixi
b∗=yj−∑i=1Nai∗yi(xi⋅xj),aj>0b^*=y_j-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_j>0b=yji=1Naiyi(xixj),aj>0

(3)(3)(3)求得分类超平面
f(x)=sign(∑i=1Nai∗yi(x⋅xi)+b∗)f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*)f(x)=sign(i=1Naiyi(xxi)+b)

支持向量

  • 0<ai∗<C0<a_i^*<C0<ai<Cxix_ixi在间隔边界上
  • ai∗=C,0<ξi<1a_i^*=C,0 < \xi_i <1ai=C,0<ξi<1则分类正确,且在间隔边界和超平面之间
  • ai∗=C,ξi=1a_i^*=C,\xi_i =1ai=C,ξi=1xix_ixi在分离超平面上
  • ai∗=C,1<ξia_i^*=C,1 < \xi_iai=C,1<ξixix_ixi在另一测

合页损失函数

修改目标函数为
∑i=1N[1−yi(w⋅x+b)]++λ∣∣w∣∣2\sum\limits_{i=1}^N[1-y_i(w \cdot x+b)]_++ \lambda||w||^2i=1N[1yi(wx+b)]++λw2
等价于线性支持向量机
ξi=[1−yi(w⋅x+b)]+\xi_i=[1-y_i(w \cdot x+b)]_+ξi=[1yi(wx+b)]+

min⁡w,b∑i=1Nξi+λ∣∣w∣∣2\min\limits_{w,b}\sum\limits_{i=1}^N\xi_i+\lambda||w||^2w,bmini=1Nξi+λw2
λ=12C\lambda=\frac{1}{2C}λ=2C1

min⁡w,b1C(C∑i=1Nξi+12λ∣∣w∣∣2)\min\limits_{w,b}\frac{1}{C}(C\sum\limits_{i=1}^N\xi_i+\frac{1}{2}\lambda||w||^2)w,bminC1(Ci=1Nξi+21λw2)
等价之

非线性支持向量机与核函数

核技巧

针对线性不可分问题,我们应用核技巧
ϕ(x)\phi(x)ϕ(x)为x向特征空间的映射
k(x,z)=ϕ(x)⋅ϕ(z)k(x,z)=\phi(x) \cdot \phi(z)k(x,z)=ϕ(x)ϕ(z)
替换xj⋅xix_j \cdot x_ixjxik(x,z)k(x,z)k(x,z)

正定核

K(x,z)K(x,z)K(x,z)为正定核函数的充要条件为其Gram矩阵是半正定的
K=[K(xi,xj)]m×mK=[K(x_i,x_j)]_{m×m}K=[K(xi,xj)]m×m
为半正定

常用核函数

  • 多项式核函数
    K(x,z)=(x⋅z+1)pK(x,z)=(x \cdot z +1)^pK(x,z)=(xz+1)p
  • 高斯核函数
    K(x,z)=exp⁡(−∣∣x−z∣∣22σ2)K(x,z)=\exp(-\frac{||x-z||^2}{2\sigma^2})K(x,z)=exp(2σ2xz2)
  • 字符串核函数
    Kn(s,t)=∑u∈∑n[ϕn(s)]n[ϕn(t)]n=∑u∈∑n∑(i,j):s(i)=t(j)=uλl(i)+l(j)K_n(s,t)=\sum\limits_{u \in \sum^n}[\phi_n(s)]_n[\phi_n(t)]_n=\sum\limits_{u \in \sum^n}\sum\limits_{(i,j):s(i)=t(j)=u}\lambda^{l(i)+l(j)}Kn(s,t)=un[ϕn(s)]n[ϕn(t)]n=un(i,j):s(i)=t(j)=uλl(i)+l(j)
    其中0<λ≤1,l(i)0<\lambda\le1,l(i)0<λ1,l(i)为字符串iii的长度,在s,ts,ts,t子串上进行
    l(i)=i∣u∣−i1+1,1≤i1<i2,...,i∣u∣≤∣s∣l(i)=i_{|u|}-i_1+1,1\le i_1<i_2,...,i_{|u|}\le |s|l(i)=iui1+1,1i1<i2,...,ius

非线性支持向量机

  • 定义:从非线性分类训练集,通过核函数与软间隔最大化,或凸规划,学习得到的分类决策函数
    f(x)=sign(∑i=1Nai∗yiK(x,xi)+b∗)f(x)=sign(\sum\limits_{i=1}^Na_i^*y_iK(x,x_i)+b^*)f(x)=sign(i=1NaiyiK(x,xi)+b)
    称为非线性支持向量机,K(x,z)K(x,z)K(x,z)为正定核函数
    算法:
    输入:线性可分训练集T={(x1,y1),(x2,y2),...,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}T={(x1,y1),(x2,y2),...,(xN,yN)},其中xi∈Rn,yi∈{−1,+1},i=1,2,...,Nx_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,NxiRn,yi{1,+1},i=1,2,...,N
    输出:分离超平面和分类决策函数
    (1)(1)(1)
                                          min⁡a 12∑i=1N∑j=1NaiajyiyjK(xi,xj)−∑i=1Nai\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_jK(x_i,x_j)-\sum\limits_{i=1}^Na_i                                      amin 21i=1Nj=1NaiajyiyjK(xi,xj)i=1Nai
                                          s.t.  ∑i=1Naiyi=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0                                      s.t.  i=1Naiyi=0
                                          0≤ai≤C,i=1,2,...,N\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i\le C,i=1,2,...,N                                      0aiC,i=1,2,...,N
    求解a∗a^*a
    (2)(2)(2)计算
    w∗=∑i=1Nai∗yixiw^*=\sum\limits_{i=1}^Na_i^*y_ix_iw=i=1Naiyixi
    b∗=yj−∑i=1Nai∗yiK(xi,xj),aj>0b^*=y_j-\sum\limits_{i=1}^Na_i^*y_iK(x_i,x_j),a_j>0b=yji=1NaiyiK(xi,xj),aj>0

(3)(3)(3)求得分类超平面
f(x)=sign(∑i=1Nai∗yiK(xi,x)+b∗)f(x)=sign(\sum\limits_{i=1}^Na_i^*y_iK(x_i,x)+b^*)f(x)=sign(i=1NaiyiK(xi,x)+b)

序列最小最优化算法

选择两个违反KKT条件的变量进行优化,直到满足停止条件或者都满足KKT条件,如果满足KKT条件,则是最优解

两个变量二次规划的求解方法

设选择a1,a2a_1,a_2a1,a2
min⁡a1,a2     W(a1,a2)=12K11a12+12K22a22+y1y2K12a1a2−(a1+a2)+y1a1∑i=3NyiaiKi1+y2a2∑i=3NyiaiKi2\min\limits_{a_1,a_2}\ \ \ \ \ W(a_1,a_2)=\frac{1}{2}K_{11}a_1^2+\frac{1}{2}K_{22}a_2^2+y_1y_2K_{12}a_1a_2-(a_1+a_2)+y_1a_1\sum\limits_{i=3}^Ny_ia_iK_{i1}+y_2a_2\sum\limits_{i=3}^Ny_ia_iK_{i2}a1,a2min     W(a1,a2)=21K11a12+21K22a22+y1y2K12a1a2(a1+a2)+y1a1i=3NyiaiKi1+y2a2i=3NyiaiKi2
s.t.        a1y1+a2y2=−∑i=3Nyiai=ξs.t.\ \ \ \ \ \ \ \ a_1y_1+a_2y_2=-\sum\limits_{i=3}^Ny_ia_i=\xis.t.        a1y1+a2y2=i=3Nyiai=ξ
             0≤ai≤C,i=1,2\ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i \le C,i=1,2             0aiC,i=1,2
Kij=K(xi,xj)K_{ij}=K(x_i,x_j)Kij=K(xi,xj)
我们要求
L≤a2new≤HL \le a_2^{new}\le HLa2newH

  • y1≠y2y_1\ne y_2y1=y2 L=max⁡(0,a2old−a1old),R=min⁡(C,C+a2old−a1old)L=\max(0,a_2^{old}-a_1^{old}),R=\min(C,C+a_2^{old}-a_1^{old})L=max(0,a2olda1old),R=min(C,C+a2olda1old)

  • y1=y2y_1= y_2y1=y2 L=max⁡(0,a2old+a1old−C),R=min⁡(C,a2old+a1old)L=\max(0,a_2^{old}+a_1^{old}-C),R=\min(C,a_2^{old}+a_1^{old})L=max(0,a2old+a1oldC),R=min(C,a2old+a1old)
    未剪辑和考虑约束条件的解为a2new,unca_2^{new,unc}a2new,unc
    g(x)=∑i=1NaiyiK(xi,x)+bg(x)=\sum\limits_{i=1}^Na_iy_iK(x_i,x)+bg(x)=i=1NaiyiK(xi,x)+b
    Ei=g(xi)−yi=(∑j=1NajyjK(xj,xi)+b)−yi,     i=1,2E_i=g(x_i)-y_i=(\sum\limits_{j=1}^Na_jy_jK(x_j,x_i)+b)-y_i,\ \ \ \ \ i=1,2Ei=g(xi)yi=(j=1NajyjK(xj,xi)+b)yi,     i=1,2

    a2new,unc=a2old+y2(E1−E2)ηa_2^{new,unc}=a_2^{old}+\frac{y_2(E_1-E_2)}{\eta}a2new,unc=a2old+ηy2(E1E2)
    其中
    η=K11+K22−2K12\eta=K_{11}+K_{22}-2K_{12}η=K11+K222K12
    再进行剪辑
    anew={Ha2new,unc>Ha2new,uncL≤a2new,unc≤HLa2new,unc<La^{new}=\begin{cases} H & a_2^{new,unc}>H\\ a_2^{new,unc} & L \le a_2^{new,unc} \le H\\ L & a_2^{new,unc}<L\\ \end{cases}anew=Ha2new,uncLa2new,unc>HLa2new,uncHa2new,unc<L

    a1new=a1old+y1y2(a2old−a1old)a_1^{new}=a_1^{old}+y_1y_2(a_2^{old}-a_1^{old})a1new=a1old+y1y2(a2olda1old)

  • 以上更新公式的证明:
    vi=∑j=3NajyjK(xi,xj)=g(xi)−∑j=12ajyjK(xi,xj)−bv_i=\sum\limits_{j=3}^Na_jy_jK(x_i,x_j)=g(x_i)-\sum\limits_{j=1}^2a_jy_jK(x_i,x_j)-bvi=j=3NajyjK(xi,xj)=g(xi)j=12ajyjK(xi,xj)b
    则原问题为
    W(a1,a2)=12K11a12+12K22a22+y1y2K12a1a2−(a1+a2)+y1v1a1+y2v2a2W(a_1,a_2)=\frac{1}{2}K_{11}a_1^2+\frac{1}{2}K_{22}a_2^2+y_1y_2K_{12}a_1a_2-(a_1+a_2)+y_1v_1a_1+y_2v_2a_2W(a1,a2)=21K11a12+21K22a22+y1y2K12a1a2(a1+a2)+y1v1a1+y2v2a2

    a1=(ξ−y2a2)y1a_1=(\xi-y_2a_2)y_1a1=(ξy2a2)y1
    则得到
    W(a2)=12K11(ξ−a2y2)2+12K22a22+y2K12(ξ−a2y2)a2−(ξ−a2y2)y1−a2+v1(ξ−a2y2)+y2v2a2W(a_2)=\frac{1}{2}K_{11}(\xi-a_2y_2)^2+\frac{1}{2}K_{22}a_2^2+y_2K_{12}(\xi-a_2y_2)a_2-(\xi-a_2y_2)y_1-a_2+v_1(\xi-a_2y_2)+y_2v_2a_2W(a2)=21K11(ξa2y2)2+21K22a22+y2K12(ξa2y2)a2(ξa2y2)y1a2+v1(ξa2y2)+y2v2a2
    求导
    ∂W∂a2=K11a2+K22a2−2K12a2−K11ξy2+K12ξy2+y1y2−1−v1y2+y2v2=0\frac{\partial W}{\partial a_2}=K_{11}a_2+K_{22}a_2-2K_{12}a_2-K_{11}\xi y_2+K_{12}\xi y_2+y_1y_2-1-v_1y_2+y_2v_2=0a2W=K11a2+K22a22K12a2K11ξy2+K12ξy2+y1y21v1y2+y2v2=0
    同时
    η=K11+K22−2K12\eta=K_{11}+K_{22}-2K_{12}η=K11+K222K12

    a2new,unc=a2old+y2(E1−E2)ηa_2^{new,unc}=a_2^{old}+\frac{y_2(E_1-E_2)}{\eta}a2new,unc=a2old+ηy2(E1E2)

变量的选择方法

  1. 选择第一个变量
    KTT条件如下
    ai=0  ⟺  yig(xi)≥1a_i=0\iff y_ig(x_i) \ge 1ai=0yig(xi)1
    0<ai<C  ⟺  yig(xi)=10<a_i<C\iff y_ig(x_i) = 10<ai<Cyig(xi)=1
    ai=C  ⟺  yig(xi)≤1a_i=C\iff y_ig(x_i) \le 1ai=Cyig(xi)1
    优先选择不满足第二个条件,再遍历整个数据集选其他不满足的
  2. 选择第二个变量
    在第一个选择后,我们选择a2a_2a2的原则是尽量变化的快,即
  • E1>0E_1>0E1>0,选最小的E2E_2E2
  • E1<0E_1<0E1<0,选最大的E2E_2E2
    优先选择间隔边界上的点,如果没有变化快的,则遍历整个数据集,如果再没有,则放弃a1a_1a1重新选择a1a_1a1
  1. 计算bbbEiE_iEi
    由KKT条件,0<a1new<C0<a_1^{new}<C0<a1new<C
    ∑i=1NaiyiKi1+b=y1\sum\limits_{i=1}^Na_iy_iK_{i1}+b=y_1i=1NaiyiKi1+b=y1

    b1new=y1−∑i=3NaiyiKi1−a1newy1K11−a2newy2K21b_1^{new}=y_1-\sum\limits_{i=3}^Na_iy_iK_{i1}-a_1^{new}y_1K_{11}-a_2^{new}y_2K_{21}b1new=y1i=3NaiyiKi1a1newy1K11a2newy2K21

    E1=∑i=3NaiyiKi1+a1oldy1K11+a2oldy2K21+bold−y1E_1=\sum\limits_{i=3}^Na_iy_iK_{i1}+a_1^{old}y_1K_{11}+a_2^{old}y_2K_{21}+b^{old}-y_1E1=i=3NaiyiKi1+a1oldy1K11+a2oldy2K21+boldy1
    由两项得
    b1new=−E1−y1K11(a1new−a1old)−y2K21(a2new−a2old)+boldb_1^{new}=-E_1-y_1K_{11}(a_1^{new}-a_1^{old})-y_2K_{21}(a_2^{new}-a_2^{old})+b^{old}b1new=E1y1K11(a1newa1old)y2K21(a2newa2old)+bold
    同样如果0<a2new<C0<a_2^{new}<C0<a2new<C
    b2new=−E2−y1K12(a1new−a1old)−y2K22(a2new−a2old)+boldb_2^{new}=-E_2-y_1K_{12}(a_1^{new}-a_1^{old})-y_2K_{22}(a_2^{new}-a_2^{old})+b^{old}b2new=E2y1K12(a1newa1old)y2K22(a2newa2old)+bold
    如果a1new,a2newa_1^{new},a_2^{new}a1new,a2new同时满足条件,则b1new=b2newb_1^{new}=b_2^{new}b1new=b2new
    如果a1new,a2newa_1^{new},a_2^{new}a1new,a2new为0或CCC,则我们取bnew=b1new+b2new2b^{new}=\frac{b_1^{new}+b_2^{new}}{2}bnew=2b1new+b2new
    最后
    Einew=∑SyjajK(xi,xj)+bnew−yiE_i^{new}=\sum\limits_{S}y_ja_jK(x_i,x_j)+b^{new}-y_iEinew=SyjajK(xi,xj)+bnewyi
    其中SSS为支持向量的集合

SMO算法

输入:训练数据集T={(x1,y1),(x2,y2),...,(xN,yN)},xi∈Rn,yi∈{−1,+1}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\},x_i \in R^n,y_i \in \{-1,+1\}T={(x1,y1),(x2,y2),...,(xN,yN)},xiRn,yi{1,+1},精度 ϵ\epsilonϵ
输出:近似解a^\hat{a}a^
(1)(1)(1)取初始值a(0)=0,k=0a^{(0)}=0,k=0a(0)=0,k=0
(2)(2)(2)按照算法求解以a1(k)a2(k),a^{(k)}_1a^{(k)}_2,a1(k)a2(k),a1(k+1)a2(k+1),a^{(k+1)}_1a^{(k+1)}_2,a1(k+1)a2(k+1),
(3)(3)(3)如果以精度 ϵ\epsilonϵ满足条件则停止,
∑i=1Naiyi=0,0≤ai≤C,i=1,2,...,N\sum\limits_{i=1}^Na_iy_i=0,0\le a_i \le C,i=1,2,...,Ni=1Naiyi=0,0aiC,i=1,2,...,N
yi⋅g(xi)={≥1{xi∣ai=0}=1{xi∣0<ai<C}≤1{xi∣ai=C} y_i \cdot g(x_i)=\begin{cases} \ge 1 &\{x_i|a_i=0\}\\ =1 &\{x_i|0<a_i<C\}\\ \le 1 & \{x_i|a_i=C\}\\ \end{cases} yig(xi)=1=11{xiai=0}{xi0<ai<C}{xiai=C}
其中
g(xi)=∑j=1NajyjK(xj,xi)+bg(x_i)=\sum\limits_{j=1}^Na_jy_jK(x_j,x_i)+bg(xi)=j=1NajyjK(xj,xi)+b
否则转(4),k=k+1(4),k=k+1(4),k=k+1
(4)(4)(4)a^=a(k+1)\hat{a}=a^{(k+1)}a^=a(k+1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值