机器学习——线性回归(一元、多元、高阶、交互项)R语言

线性回归

一元线性回归

fix(women)
A data.frame: 6 × 2
heightweight
158115
259117
360120
461123
562126
663129
?women
# 查看数据的列明
names(women)
  1. 'height'
  2. 'weight'
``` # 查看数据类型 class(women) ``` 'data.frame'
# 线性拟合
fit.lm<-lm(weight~height,data=women)
fit.lm

Call:
lm(formula = weight ~ height, data = women)
Coefficients:
(Intercept) height
-87.52 3.45

summary(fit.lm)
# Residuals—残差统计量、intercept-表示截距、Estimate-包含由普通最小二乘法计算出来的估计回归系数、Std.error-估计的回归系数的标准误差、
# Multiple R-squared-拟合优度越大越好、F-statistic-判断方程的显著性检验
Call:
lm(formula = weight ~ height, data = women)

Residuals:
Min      1Q  Median      3Q     Max
-1.7333 -1.1333 -0.3833  0.7417  3.1167
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***
height        3.45000    0.09114   37.85 1.09e-14 ***
-----------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared:  0.991,	Adjusted R-squared:  0.9903
F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14
names(fit.lm)
  1. 'coefficients'
  2. 'residuals'
  3. 'effects'
  4. 'rank'
  5. 'fitted.values'
  6. 'assign'
  7. 'qr'
  8. 'df.residual'
  9. 'xlevels'
  10. 'call'
  11. 'terms'
  12. 'model'
#回归诊断图的理解
#残差与拟合图,本质上残差服从正态分布与估计值无关的假设,与估计值无关,残差应该在y=0上下随机波动
#QQ图用来检测残差是否服从正态分布
#方差相同,红线应该是水平波动不可以存在上下波动
#检查是否存在特别极端的点cook的内部即可
#使用par()函数在同一窗口中创建多个图,mfrow: 决定了网格的行值和列
par(mfrow=c(2,2))
plot(fit.lm)

#绘制散点图
plot(women$height,women$weight)
#添加拟合直线abline(a,b,h,v)a,b指定线的截距和斜率、h为水平线指定y、v为垂直线指定x
abline(fit.lm)

# 预测
#构造要预测数据,newdata的类型必须是dataframe结构,
#而且必须是与原来的名称相同
newdata <- data.frame(height= seq(50, 60, 0.5))
#predict.lm函数进行预测:predict(object,newdata,interval)object代表的是模型对象、interval代表的是置信区间的类型
#confidence是对均值做区间估计、prediction是对随机变量做区间预测
pred=predict(fit.lm, newdata, interval = "prediction")
pred
A matrix: 21 × 3 of type dbl
fitlwrupr
1 84.98333 80.47778 89.48888
2 86.70833 82.26669 91.14998
3 88.43333 84.05432 92.81235
4 90.15833 85.84061 94.47606
5 91.88333 87.62550 96.14116
6 93.60833 89.40894 97.80772
7 95.33333 91.19087 99.47580
8 97.05833 92.97122101.14545
9 98.78333 94.74992102.81674
10100.50833 96.52692104.48975
11102.23333 98.30213106.16453
12103.95833100.07550107.84116
13105.68333101.84696109.51971
14107.40833103.61642111.20025
15109.13333105.38383112.88284
16110.85833107.14911114.56756
17112.58333108.91219116.25448
18114.30833110.67300117.94367
19116.03333112.43148119.63519
20117.75833114.18755121.32911
21119.48333115.94117123.02550

多项式回归

#对于多项式拟合存在两种方式
fit2.lm <- lm(weight~height+I(height^2),data=women)
fit3.lm <- lm(weight~poly(height,2,raw=TRUE),data=women)
summary(fit2.lm)
summary(fit3.lm)
#对于训练集的数据进行拟合预测用fitted、对于新的样本用predict
fitted(fit2.lm)
fitted.values(fit2.lm)
Call:
lm(formula = weight ~ height + I(height^2), data = women)

Residuals:
Min       1Q   Median       3Q      Max
-0.50941 -0.29611 -0.00941  0.28615  0.59706

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 261.87818   25.19677  10.393 2.36e-07 ***
height       -7.34832    0.77769  -9.449 6.58e-07 ***
I(height^2)   0.08306    0.00598  13.891 9.32e-09 ***
-----------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3841 on 12 degrees of freedom
Multiple R-squared:  0.9995,	Adjusted R-squared:  0.9994
F-statistic: 1.139e+04 on 2 and 12 DF,  p-value: < 2.2e-16

Call:
lm(formula = weight ~ poly(height, 2, raw = TRUE), data = women)

Residuals:
Min       1Q   Median       3Q      Max
-0.50941 -0.29611 -0.00941  0.28615  0.59706

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)                  261.87818   25.19677  10.393 2.36e-07 ***
poly(height, 2, raw = TRUE)1  -7.34832    0.77769  -9.449 6.58e-07 ***
poly(height, 2, raw = TRUE)2   0.08306    0.00598  13.891 9.32e-09 ***
----------------------------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3841 on 12 degrees of freedom
Multiple R-squared:  0.9995,	Adjusted R-squared:  0.9994
F-statistic: 1.139e+04 on 2 and 12 DF,  p-value: < 2.2e-16
1
115.102941176471
2
117.473109243697
3
120.009405300582
4
122.711829347123
5
125.580381383323
6
128.615061409179
7
131.815869424693
8
135.182805429864
9
138.715869424693
10
142.415061409179
11
146.280381383323
12
150.311829347124
13
154.509405300582
14
158.873109243697
15
163.402941176471
1
115.102941176471
2
117.473109243697
3
120.009405300582
4
122.711829347123
5
125.580381383323
6
128.615061409179
7
131.815869424693
8
135.182805429864
9
138.715869424693
10
142.415061409179
11
146.280381383323
12
150.311829347124
13
154.509405300582
14
158.873109243697
15
163.402941176471
coef(fit2.lm)#查看回归系数
(Intercept)
261.878183581103
height
-7.34831932773043
I(height^2)
0.0830639948286958
plot(women$height,women$weight)
#lines与abline的区别是前者做的是一般连线图,其输入的是点向量
#后者输入的是回归模型对象,之可以添加直线绘图,可以达到相同的目的
lines(women$height,fitted(fit2.lm))

#plot(women$height,women$weight)
#fit4.lm <- lm(height~weight+I(weight^2),data=women)
#abline(fit2.lm)

par(mfrow=c(2,2))
plot(fit2.lm)  #残差

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wRSClouu-1679993060920)((https://upload-images.jianshu.io/upload_images/28957475-605f2a872101ad04.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ETLh3NUP-1679993060920)(https://upload-images.jianshu.io/upload_images/28957475-76b29532f9042095.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]

# 尝试通过添加高阶项,比如(x^3)来提高回归的预测精度。
fit22.lm<-lm(weight~poly(height,3,raw=T),data=women)  #多项式的方法,包含所有指定高阶项以下的项,而不仅仅只是给出指定的阶数
summary(fit22.lm)

par(mfrow=c(2,2))
plot(fit22.lm)  #残差

plot(women$height,women$weight)
lines(women$height,fitted(fit22.lm))
Call:
lm(formula = weight ~ poly(height, 3, raw = T), data = women)

Residuals:
Min       1Q   Median       3Q      Max
-0.40677 -0.17391  0.03091  0.12051  0.42191

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)               -8.967e+02  2.946e+02  -3.044  0.01116 *
poly(height, 3, raw = T)1  4.641e+01  1.366e+01   3.399  0.00594 **
poly(height, 3, raw = T)2 -7.462e-01  2.105e-01  -3.544  0.00460 **
poly(height, 3, raw = T)3  4.253e-03  1.079e-03   3.940  0.00231 **
-------------------------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2583 on 11 degrees of freedom
Multiple R-squared:  0.9998,	Adjusted R-squared:  0.9997
F-statistic: 1.679e+04 on 3 and 11 DF,  p-value: < 2.2e-16

](https://upload-images.jianshu.io/upload_images/28957475-d875e23e671762ed.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240))

多元线性回归:高阶的、交互项的

library(MASS)
#data()#因为前面有加载报的操作,所以后边data()中什么命令也没有,本质上是data(,package="MASS")
#看Boston数据集
data(Boston)
head(Boston)
tail(Boston,3)
# fix(Boston)#在R中修改数据
names(Boston)  #住宅结构与居住环境信息
?Boston
A data.frame: 6 × 14
crimzninduschasnoxrmagedisradtaxptratioblacklstatmedv
10.00632182.3100.5386.57565.24.0900129615.3396.904.9824.0
20.02731 07.0700.4696.42178.94.9671224217.8396.909.1421.6
30.02729 07.0700.4697.18561.14.9671224217.8392.834.0334.7
40.03237 02.1800.4586.99845.86.0622322218.7394.632.9433.4
50.06905 02.1800.4587.14754.26.0622322218.7396.905.3336.2
60.02985 02.1800.4586.43058.76.0622322218.7394.125.2128.7
A data.frame: 3 × 14
crimzninduschasnoxrmagedisradtaxptratioblacklstatmedv
5040.06076011.9300.5736.97691.02.1675127321396.905.6423.9
5050.10959011.9300.5736.79489.32.3889127321393.456.4822.0
5060.04741011.9300.5736.03080.82.5050127321396.907.8811.9
  1. 'crim'
  2. 'zn'
  3. 'indus'
  4. 'chas'
  5. 'nox'
  6. 'rm'
  7. 'age'
  8. 'dis'
  9. 'rad'
  10. 'tax'
  11. 'ptratio'
  12. 'black'
  13. 'lstat'
  14. 'medv'
#拟合多元线性回归 
lm.fit=lm(medv~lstat+rm,data=Boston)
lm.fit
summary(lm.fit)
names(lm.fit)
Call:
lm(formula = medv ~ lstat + rm, data = Boston)

Coefficients:
(Intercept)        lstat           rm
-1.3583      -0.6424       5.0948

Call:
lm(formula = medv ~ lstat + rm, data = Boston)

Residuals:
Min      1Q  Median      3Q     Max
-18.076  -3.516  -1.010   1.909  28.131

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.35827    3.17283  -0.428    0.669
lstat       -0.64236    0.04373 -14.689   <2e-16 ***
rm           5.09479    0.44447  11.463   <2e-16 ***
----------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.54 on 503 degrees of freedom
Multiple R-squared:  0.6386,	Adjusted R-squared:  0.6371
F-statistic: 444.3 on 2 and 503 DF,  p-value: < 2.2e-16
  1. 'coefficients'
  2. 'residuals'
  3. 'effects'
  4. 'rank'
  5. 'fitted.values'
  6. 'assign'
  7. 'qr'
  8. 'df.residual'
  9. 'xlevels'
  10. 'call'
  11. 'terms'
  12. 'model'
#提取回归系数
coef(lm.fit)
#拟合样本数据
fitted(lm.fit)
(Intercept)
-1.35827281187449
lstat
-0.642358334244129
rm
5.09478798433654
1
28.941013680603
2
25.4842056605593
3
32.6590747685798
4
32.4065199998349
5
31.6304069906576
6
28.0545270059976
7
21.2870784553023
8
17.7855965266756
9
8.1046933839978
10
18.2465067305075
11
17.9949622289472
12
20.7322130905842
13
18.5534841969081
14
23.6447410660871
15
23.1089582312963
16
22.9239451976971
17
24.6525760358365
18
19.73611045094
19
18.9297215033518
20
20.5737759641471
21
13.5173240750685
22
20.1483217520967
23
17.9089669708705
24
15.4876460563005
25
18.3528103591559
26
16.5621090140552
27
18.7444028109183
28
18.34995811367
29
23.5101884680665
30
24.9488893513429
31
13.2309525887229
32
21.2009271504736
33
11.1559662530231
34
15.8998380534484
35
16.6339862221155
36
22.6510756237111
37
21.0710752109097
38
22.8127543051733
39
22.5301423767843
40
29.4668659408904
41
33.155648488302
42
30.0244275043423
43
26.3393723415393
44
25.5063093520635
45
23.4274733730326
46
21.0318339224932
47
19.0308000359423
48
17.2869620498852
49
6.35742723749689
50
16.7765244616239
51
20.3822283431408
52
23.7389166204213
53
28.4222397493317
54
23.7851847604981
55
19.132935493086
56
32.4841016988669
57
27.455351303557
58
30.8304866690991
59
25.5426211789588
60
22.9159917295573
61
19.4438929108913
62
19.7615779561921
63
27.2106068255392
64
26.99027936289
65
29.6641164381871
66
27.6881301886823
67
21.5475159108212
68
23.3857884526783
69
18.7335005772485
70
22.9782247179402
71
27.0183336774926
72
22.6652580204237
73
25.9957983080991
74
25.6152963101065
75
26.2461427076934
76
24.9248809495225
77
22.9428716808724
78
23.3267053192647
79
22.4657440619383
80
22.7230509664968
81
29.516290370606
82
27.7263016832065
83
26.4324330592939
84
25.2371735973556
85
25.0128404446232
86
28.2255716016626
87
21.0261487355303
88
24.405420099229
89
30.807935756029
90
31.0462888240524
91
25.6758047589223
92
26.0065058869992
93
26.2207073757894
94
26.2964101031837
95
23.6764825425992
96
28.1230146616317
97
22.7565620252632
98
37.0472428465693
99
36.1897499723857
100
32.4484767909942
101
26.8633504501777
102
28.2625960862591
103
24.445575134786
104
21.2751450357578
105
22.1410064262989
106
17.8716899194778
107
16.3885033477181
108
20.8066642386557
109
23.7436478375448
110
20.3884894450616
111
21.8532804059167
112
26.326867827025
113
18.3545799414102
114
18.7012716564716
115
23.7918866493151
116
18.7200630115851
117
22.3731434350887
118
22.7011547991013
119
18.6852746348174
120
19.0974601972956
121
19.3174433930929
122
20.0643808164184
123
17.4942734297584
124
12.154480351257
125
17.3013262320283
126
19.6258011322085
127
9.72808395271157
128
16.6042154172969
129
21.5204139513767
130
15.5801952057933
131
23.4501529794949
132
22.9960427992055
133
23.9626915475232
134
18.6489370692436
135
16.8531988481851
136
20.0228117201171
137
18.0591015423275
138
22.1514807424117
139
14.7868207262998
140
18.121833229633
141
14.5775708480812
142
2.10891780017014
143
8.94081614306831
144
9.52892069574784
145
4.80679706531704
146
12.0152158401217
147
16.6199276988068
148
4.76981118873819
149
6.87170964910109
150
13.3786692669206
151
20.7747667153916
152
17.6434427767182
153
16.3914215545814
154
17.585033692988
155
20.1552247303529
156
20.3366406874171
157
15.1337859268475
158
31.0664154091936
159
25.4163470119212
160
27.0617688760923
161
26.9511812518862
162
35.6853144845795
163
37.1579350401705
164
39.1779468872535
165
20.98956503783
166
23.4234934216279
167
36.6615752792267
168
20.7855659943476
169
23.7055149510383
170
23.9870635202045
171
19.3043758329599
172
20.8715097750675
173
17.5936419068025
174
25.5229675540618
175
22.2997556462399
176
28.5684394120713
177
22.8181080946234
178
26.7748793868152
179
29.1468530877048
180
30.9658613142042
181
33.3465268796132
182
23.8738183052822
183
31.9987680449968
184
28.4302253908196
185
18.2127495396146
186
21.542945560438
187
35.6805173060786
188
28.9036256251452
189
29.1140032092827
190
31.7854674340077
191
30.7795709626038
192
29.9628428269645
193
33.3685469204126
194
30.055223060366
195
29.4741775326948
196
36.8553783120707
197
33.1466252262699
198
29.3196801349634
199
31.4488028134934
200
31.2487193747197
201
202
32.2889956093431
203
28.6989718359882
204
29.5293386267301
205
22.6634884381694
206
15.8586984893853
207
25.9907163894539
208
21.7991955404433
209
25.4910378574497
210
26.1381145394781
211
20.320371794958
212
16.9978750607969
213
17.860599465708
214
24.5018317613922
215
21.608944541447
216
26.7558547689144
217
26.7130936199981
218
24.4731822278228
219
20.1814901586924
220
27.3935591020704
221
28.1431283774336
222
26.8495251896564
223
21.4175594018623
224
22.1336304877984
225
26.1921093195769
226
24.1050673056101
227
19.7280733320953
228
24.3387277645277
229
27.1718127586885
230
26.4539206131412
231
24.2536719922697
232
22.2479261926042
233
21.8921983461714
234
24.0445781608031
235
22.8774630988419
236
23.079912953518
237
32.0065397277061
238
26.4052410144748
239
28.1442946913702
240
30.7020278715895
241
22.5177488663348
242
20.5521066248693
243
27.7539666882698
244
28.5979190420761
245
30.2109704227389
246
27.8655983676898
247
28.6337900820754
248
23.6154882642
249
30.0288482426432
250
22.3225269527581
251
25.3064527414074
252
18.9850434641274
253
22.6988012525381
254
22.4832194910329
255
21.6423912535173
256
26.2342092881489
257
21.3741821152891
258
19.4143489341904
259
18.8026558478964
260
39.9758901024489
261
12.2106758605297
262
14.93414327497
263
9.76025657614333
264
21.8687353006423
265
30.294198700716
266
32.4853790168681
267
24.1892543734149
268
22.8694645880148
269
1.30195775761222
270
-4.66638608393946
271
27.2666157053376
272
17.5885648081456
273
19.6120257343627
274
15.9290055899492
275
16.3560282948147
276
23.0872229306411
277
18.4462008597419
278
11.6868167812512
279
10.9886361726274
280
1.22032532580986
281
5.73586310340784
282
4.17678719883514
283
3.56662399733854
284
3.83528035713261
285
12.7094631547094
286
16.7574998437231
287
17.4196469309261
288
7.80331745385511
289
20.4491732446383
290
18.1321852870232
291
20.6129255525078
292
18.8313632934923
293
15.1256957159646
294
6.77386462218477
295
9.20494719516641
296
11.9482902426331
297
17.9052460209315
298
18.2224516713185
299
13.1943238483352
300
9.23322833788668
301
12.83401278218
302
4.73131634605215
303
19.4214916099036
304
10.3008912720989
305
20.8453666054506
306
21.4781788547428
307
18.9268869471935
308
0.142550031664321
309
12.0068038957583
310
-2.08933711100554
311
12.7610834695549
312
16.6281578577399
313
8.55205663278294
314
15.7459503587044
315
18.8013318725266
316
21.6561907753603
317
19.155997974418
318
18.3598372108161
319
14.7746926519857
320
15.9713533053291
321
13.0134773715595
322
18.3014023884075
323
20.912559253756
324
16.3701978221881
325
15.678485839594
326
19.6522402966274
327
20.8063778838302
328
23.6481692265309
329
21.0127304738757
330
20.5255950644033
331
17.4673982984316
332
19.9645844218174
333
12.9944849270067
334
7.02626334417762
335
12.6129404884816
336
14.0806609108578
337
18.74010433134
338
19.6694888976044
339
19.5729726660462
340
13.1849112767638
341
16.145209923781
342
19.5202230306005
343
19.9288758632398
344
18.507034271401
345
18.931042249359
346
21.8237219451952
347
21.1585279577368
348
19.6300786930966
349
25.5544162410789
350
20.9009363130341
351
20.2392621860754
352
16.8769482485398
353
18.0028384810517
354
20.3185105126479
355
20.1804654074873
356
22.2343776228761
357
21.7155457795788
358
21.8389097891041
359
25.2142140707373
360
21.7832886041637
361
18.9060879270501
362
17.9494598386098
363
15.5306597720129
364
17.1874841834578
365
18.2670419291968
366
19.5972674226921
367
22.1100097808359
368
22.2126117635541
369
26.713449141508
370
14.6387613959314
371
14.5549748923238
372
19.6770787948833
373
9.66333655102528
374
18.5712701048254
375
21.9558437806173
376
23.5444652765723
377
28.0596925753476
378
30.1130932224745
379
21.3045217110488
380
19.9841672653487
381
24.0038777689549
382
20.1687330773821
383
21.3714473085375
384
14.827709338248
385
10.8275800634918
386
5.52428703198578
387
17.5164285986196
388
20.5483599362519
389
20.0029586204622
390
20.1037910209262
391
16.223668376617
392
12.5231792377786
393
19.1036762565292
394
21.007986387413
395
17.3149906258094
396
20.1430194400035
397
26.0200592767156
398
23.9892159773285
399
30.5600671617203
400
29.093234747806
401
24.3015150598311
#提取系数的置信区间,就是置信区间
confint(lm.fit,level = 0.95)
A matrix: 3 × 2 of type dbl
2.5 %97.5 %
(Intercept)-7.5919003 4.8753547
lstat-0.7282772-0.5564395
rm 4.2215504 5.9680255
#回归诊断
par(mfrow=c(2,2))
plot(lm.fit)

带有交互项

#带交互项的回归
#注意:变量x和y在lm拟合中,x*y和x:y的意思是不一样的。
summary(lm(medv~lstat*age,data=Boston)) #单变量+交互
summary(lm(medv~age*lstat,data=Boston)) #单变量+交互
Call:
lm(formula = medv ~ lstat * age, data = Boston)

Residuals:
Min      1Q  Median      3Q     Max
-15.806  -4.045  -1.333   2.085  27.552

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
age         -0.0007209  0.0198792  -0.036   0.9711
lstat:age    0.0041560  0.0018518   2.244   0.0252 *
------------------------------------------------------------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared:  0.5557,	Adjusted R-squared:  0.5531
F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

Call:
lm(formula = medv ~ age * lstat, data = Boston)

Residuals:
Min      1Q  Median      3Q     Max
-15.806  -4.045  -1.333   2.085  27.552

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
age         -0.0007209  0.0198792  -0.036   0.9711
lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
age:lstat    0.0041560  0.0018518   2.244   0.0252 *
----------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared:  0.5557,	Adjusted R-squared:  0.5531
F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

多元线性回归高阶


## 多元线性回归高阶情况
summary(lm(medv~lstat+age+poly(rm,3,raw=T),data=Boston))
summary(lm(medv~lstat+I(rm^3),data=Boston))#这种高阶的情况也是可以的只不过只能输出指定阶数的项
Call:
lm(formula = medv ~ lstat + age + poly(rm, 3, raw = T), data = Boston)

Residuals:
Min       1Q   Median       3Q      Max
-31.1634  -2.6180  -0.4345   1.9570  27.7091

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)           160.858226  37.336812   4.308 1.98e-05 ***
lstat                  -0.682214   0.047720 -14.296  < 2e-16 ***
age                    -0.004674   0.009731  -0.480   0.6313
poly(rm, 3, raw = T)1 -52.259779  18.264834  -2.861   0.0044 **
poly(rm, 3, raw = T)2   6.003959   2.936142   2.045   0.0414 *
poly(rm, 3, raw = T)3  -0.159260   0.154874  -1.028   0.3043
--------------------------------------------------------------------------------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.781 on 500 degrees of freedom
Multiple R-squared:  0.7324,	Adjusted R-squared:  0.7298
F-statistic: 273.8 on 5 and 500 DF,  p-value: < 2.2e-16

Call:
lm(formula = medv ~ lstat + I(rm^3), data = Boston)

Residuals:
Min       1Q   Median       3Q      Max
-24.5407  -2.9667  -0.6511   2.0786  27.9885

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.312269   1.195934   15.31   <2e-16 ***
lstat       -0.609726   0.039741  -15.34   <2e-16 ***
I(rm^3)      0.046324   0.003136   14.77   <2e-16 ***
-----------------------------------------------------

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.196 on 503 degrees of freedom
Multiple R-squared:  0.6821,	Adjusted R-squared:  0.6808
F-statistic: 539.5 on 2 and 503 DF,  p-value: < 2.2e-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值