ops
convert_to_tensor
name_scope
def my_op(a, b, c, name=None):
with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
a = tf.convert_to_tensor(a, name="a")
b = tf.convert_to_tensor(b, name="b")
c = tf.convert_to_tensor(c, name="c")
# Define some computation that uses `a`, `b`, and `c`.
return foo_op(..., name=scope)
control_dependencies
这个目前发现的是和control_flow_ops.Assert连用,可以看下面Assert的实例
math_ops
greater
大于的显示true,支持broadcast
array_ops
size
# 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12
gen_array_ops
identity
Return a tensor with the same shape and contents as the input tensor or value
gen_image_ops
Decode a JPEG-encoded image to a uint8 tensor
control_flow_ops
Assert
Asserts that the given condition is true
# Ensure maximum element of x is smaller or equal to 1
assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
x = tf.with_dependencies([assert_op], x)