
数据处理/可视化
常用的工具
心_kokoro
暂停更新
展开
-
网络包监控数据的处理与可视化
文件下载targetA.csvtargetB.csv要求文件格式及说明处理结果代码import numpy as npimport pandas as pdfrom pandas import read_csvimport matplotlibimport matplotlib.pyplot as plt from matplotlib.pyplot import MultipleLocatormatplotlib.rcParams['axes.unicode_minu原创 2021-03-16 13:30:28 · 280 阅读 · 1 评论 -
HP滤波图文介绍与python代码实现
HP滤波图文介绍目标原理python实现代码结果目标我们希望去除信号中的趋势,使信号看起来是直的原理python实现代码import numpy as npimport matplotlib.pyplot as plt%matplotlib inlinedef hp(y, lamb=10): def D_matrix(N): #(N-1,N) 元素全为0 D = np.zeros((N-1,N)) #后(N-1,N-1)对角原创 2020-12-17 23:06:52 · 11212 阅读 · 8 评论 -
python绘制k线图
python绘制阿里巴巴股票k线图准备流程效果准备安装几个库pip install datetimepip install matplotlibpip install pandas_datareaderpip install mpl_finance流程获取数据数据处理交给mpl_finance绘图#代码import datetime as dtimport matplotlib.dates as mdatesimport matplotlib.pyplot as plti原创 2020-11-28 21:49:03 · 724 阅读 · 0 评论 -
Numpy学习(6):分割
Numpy学习:分割import numpy as npa = np.arange(12).reshape(3,4)print(np.split(a,2,axis=1))print(np.split(a,3,axis=0))#不等量分割print(np.array_split(a,3,axis=1))原创 2020-11-26 22:17:37 · 168 阅读 · 0 评论 -
Numpy学习(5):合并
Numpy学习:合并import numpy as npa = np.array([1,2,3])b = np.array([4,5,6])#上下合并 注意参数为tupleprint(np.vstack((b,a)))#左右合并print(np.hstack((a,b)))#增加维度print(a[:,np.newaxis])print(a[:,np.newaxis].shape)print(a[np.newaxis,:])print(a[np.newaxis,:].shap原创 2020-11-26 22:12:10 · 223 阅读 · 0 评论 -
Numpy学习(4):索引
Numpy学习:索引import numpy as npa = np.arange(3,15).reshape(3,4)print(a)#切片print(a[0:2,1:2])#逐行for row in a: print(row)#逐列for column in a.T: print(column)#压缩到一维print(a.flatten())for item in a.flat: print(item)...原创 2020-11-26 22:01:14 · 117 阅读 · 0 评论 -
Numpy学习(3):基本运算
Numpy学习:基本运算import numpy as npa = np.arange(2,14).reshape((3,4))#返回元素下标print(np.argmax(a))print(np.argmin(a))#均值print(a.mean())print(np.mean(a))print(np.average(a))#中位数print(np.median(a))#累加print(np.cumsum(a))#累差print(np.diff(a))#取得所原创 2020-11-26 21:35:14 · 166 阅读 · 0 评论 -
Numpy学习(2):基本运算
import numpy as npa = np.array([10,20,30,40])b = np.ones(4)#加减乘除乘方print(a+b)print(a-b)print(a*b)print(a/b)print(b**2)#三角函数print(10*np.sin(a))#蒙版print(a <= 20)#二维a = np.array([[1,1],[0,1]])b = np.arange(4).reshape((2,2))#两者等价c_dot =原创 2020-11-26 21:20:56 · 274 阅读 · 0 评论 -
Numpy学习(1):属性与创建
Numpy学习:属性与创建import numpy as np#列表转化为矩阵array = np.array([[1,2,3],[4,5,6]])#维度print(array.ndim)#行列数print(array.shape)#元素个数print(array.size)#数据格式#int64a = np.array([1,2,3],dtype=np.int)#int32a = np.array([1,2,3],dtype=np.int32)#float64a = n原创 2020-11-26 20:18:36 · 137 阅读 · 0 评论