从bitmap到布隆过滤器,再到高并发缓存设计策略

bitmap和布隆过滤器

海量整数中是否存在某个值--bitmap

在一个程序中,经常有让我们判断一个集合中是否存在某个数的case;大多数情况下,只需要用map或是list这样简单的数据结构,如果使用的是高级语言,还能乘上快车调用几个封装好的api,加几个if else,两三行代码就可以在控制台看自己“完美”而又“健壮”的代码跑起来了。

但是,事无完美,在高并发环境下,所有的case都会极端化,如果这是一个十分庞大的集合(给这个庞大一个具体的值吧,一个亿),简单的一个hash map,不考虑链表所需的指针内存空间,一亿个int类型的整数,就需要380多M(4byte × 10 ^8),十亿的话就是4个G,不考虑性能,光算算这内存开销,即使现在满地都是128G的服务器,也不好吃下这一壶。

bitmap则使用位数代表数的大小,bit中存储的0或者1来标识该整数是否存在,具体模型如下:

这是一个能标识0-9的“bitmap”,其中4321这四个数存在

计算一下bitmap的内存开销,如果是1亿以内的数据查找,我们只需要1亿个bit = 12MB左右的内存空间,就可以完成海量数据查找了,是不是极其诱人的一个内存缩减,以下为Java实现的bitmap代码:

public class MyBitMap {
 
    private byte[] bytes;
    private int initSize;
 
    public MyBitMap(int size) {
        if (size <= 0) {
            return;
        }
        initSize = size / (8) + 1;
        bytes = new byte[initSize];
    }
 
    public void set(int number) {
        //相当于对一个数字进行右移动3位,相当于除以8
        int index = number >> 3;
        //相当于 number % 8 获取到byte[index]的位置
        int position = number & 0x07;
        //进行|或运算  参加运算的两个对象只要有一个为1,其值为1。
        bytes[index] |= 1 << position;
    }
 
 
    public boolean contain(int number) {
        int index = number >> 3;
        int position = number & 0x07;
        return (bytes[index] & (1 << position)) != 0;
    }
 
    public static void main(String[] args) {
        MyBitMap myBitMap = new MyBitMap(32);
        myBitMap.set(30);
        myBitMap.set(13);
        myBitMap.set(24);
        System.out.println(myBitMap.contain(2));
    }
 
}

使用简单的byte数组和位运算,就能做到时间与空间的完美均衡,是不是美美哒,wrong!试想一下,如果我们明确这是一个一亿以内,但是数量级只有10的集合,我们使用bitmap,同样需要开销12M的数据,如果是10亿以内的数据,开销就会涨到120M,bitmap的空间开销永远是和他的数据取值范围挂钩的,只有在海量数据下,他才能够大显身手。

再说说刚刚提到的那个极端case,假设这个数据量在一千万,但是取值范围好死不死就在十个亿以内,那我们不可避免还是要面对120M的开销,有方法应对么?

布隆过滤器

如果面对笔者说的以上问题,我们结合一下常规的解决方案,譬如说hash一下,我将十亿以内的某个数据,hash成一亿内的某个值,再去bitmap中查怎么样,如下图,布隆过滤器就是这么干的:

利用多个hash算法得到的值,减小hash碰撞的概率

像上面的图注所说,我们可以利用多个hash算法减小碰撞概率,但只要存在碰撞,就一定会有错误判断,我们无法百分百确定一个值是否真的存在,但是hash算法的魅力在于,我不能确定你是否存在,但是我可以确定你是否真的不存在,这也就是以上的实现为什么称之“过滤器”的原因了。

高并发缓存设计策略

why cache??

如果读者是一个计算机专业的同学,cache这个词应该是能达到让耳朵起茧的出现频次。在计算机体系中,cache是介于cpu以及内存之间,用来缓和cpu和内存处理速度差距的那么一个和事佬;在OS中,page cache又是内存和IO之间的和事佬。(搜索公众号Java知音,回复“2021”,送你一份Java面试题宝典)

cache是个和事老??听着似乎怪怪的,但是也蛮形象的啦。

前面讲了大半截的算法理论,为了防止读者犯困,直接进入下半部分主题,高并发缓存设计。

即使是在软件层,我们同样需要这么一个和事老,从最简单的服务架构开始,通常我们在服务端发起请求,然后CURD某个关系型数据库例如Mysql。但是,类似这样的架构都需要有一个磁盘作为终端持久化,即使增加索引,使用B+树的这种数据结构进行优化查询,效率还是会卡在需要频繁寻道的IO上。这个时候,一个和事老的作用就十分明显了,我们会添加一些内存操作,来缓和IO处理速度慢带来的压力。cache is not a problem,how to use it is actually a problem。

缓存一致性问题

缓存处理的机制有以下几种:

  • cache aside;
  • read through;
  • write through;
  • write behind caching;

缓存穿透问题

所谓的缓存击穿,就是当请求发出,而无法在缓存中读到数据时,请求还是会作用到database,这样的话,缓存减压的效果就不复存在了。

设想这么一个场景,如果一个用户,使用大流量恶意频繁地去查询一条数据库中没有的记录,一直击穿缓存,势必会把database打死,如何避免缓存击穿,这就是一个问题了。

有两种方案,第一种,在缓存中添加空值,如果在database中查询无果,我们大可以把值设置为null,防止下次再次访问数据库,这样做简单便捷,但是多少有些浪费空间。

第二种方案,就是使用布隆过滤器(点题),在cache与web服务器中间加一层布隆过滤器,对访问的key做记录,如此以来,同样可以解决缓存击穿的问题。

缓存雪崩问题

缓存雪崩发生于在某个时间点,缓存同时失效,例如缓存设置了失效时间,这会联动的导致大量缓存击穿问题。

加分布式锁是一种解决方案,只有拿到锁的请求才能访问database。但是这样治标不治本,当请求量过多时,大量的线程阻塞,也会把内存撑坏的。

预热数据,分散地设置失效时间,这样可以减少缓存雪崩发生的概率。

提高缓存可用性,cache的单点一样是会是缓存雪崩的隐患,大部分缓存中间件都提供高可用架构,如redis的主从+哨兵架构。

### Redis 中布隆过滤器Bitmap 的使用场景 #### 布隆过滤器的特点及其在 Redis 中的应用 布隆过滤器(Bloom Filter)是一种高效的空间节约型概率数据结构,主要用于快速判断某个元素是否属于一个集合。这种特性使得其非常适合应用于需要频繁查询大量数据集成员关系的场合[^4]。 对于 Redis 来说,虽然本身并不直接提供原生支持的布隆过滤器模块,但是可以通过第三方扩展或者利用现有的命令组合来模拟实现这一功能。例如,在某些特定版本或通过安装额外插件的方式可以启用布隆过滤器的支持;而在其他情况下,则可能依赖于像 `SETBIT` 和 `GETBIT` 这样的底层指令配合哈希函数构建自定义解决方案[^2]。 #### Bitmap 特性概述 另一方面,Bitmap 是指由一系列二进制位组成的序列,其中每一位都可以单独设置为0或1。Redis 提供了一组专门针对 bitmap 操作的功能,允许用户方便地执行按位运算以及统计操作。由于每个 bit 只占用一位存储空间,因此当面对海量布尔状态记录需求时显得尤为经济有效[^1]。 #### 实现方式对比 - **布隆过滤器** - 利用多个独立散列函数将输入映射到固定长度的比特向量上; - 对应位置设为 true (即置1),以此表示该元素已被加入过; - 查询时只需检查对应索引处的状态即可得出结论; - 存在误报的可能性——即认为不存在但实际上存在的情况,但绝不会漏检真正存在过的项目。 - **Bitmap** - 主要是用来保存大量的布尔值信息; - 支持高效的批量更新和读取; - 不涉及复杂的算法逻辑,更侧重于简单直观的数据表达形式。 #### 使用场景分析 - **布隆过滤器适用范围** - 缓存穿透防护:防止恶意请求绕过缓存层直击数据库造成压力过大; - 黑名单管理:快速筛选出已知不良行为者而不必每次都访问持久化存储; - URL 去重:辅助网络爬虫识别并忽略重复抓取的内容资源。 - **Bitmap 应用领域** - 用户签到打卡系统:每天标记一次完成相应动作的时间戳; - 统计在线人数变化趋势:每分钟采样当前活跃连接数的变化曲线; - 大规模权限控制机制:精细化设定不同角色所能触及的操作权限列表[^3]。 综上所述,尽管两者都涉及到位级操作的概念,但在实际应用中的侧重点各有千秋。选择合适的技术方案取决于具体业务需求和技术栈现状等因素考量。 ```python import redis from hashlib import md5, sha1 def add_to_bloom_filter(r, key, item): """Add an element to the bloom filter.""" hashes = get_hashes(item) for h in hashes: r.setbit(key, h % 8 * 1024, 1) def check_in_bloom_filter(r, key, item): """Check if an element is possibly in the set represented by a bloom filter.""" hashes = get_hashes(item) return all(r.getbit(key, h % 8 * 1024) == 1 for h in hashes) def get_hashes(value): """Generate multiple hash values from one input value using different algorithms.""" algos = [md5, sha1] results = [] for algo in algos: hasher = algo() hasher.update(str.encode(value)) result = int(hasher.hexdigest(), base=16) results.append(result) return results r = redis.Redis(host='localhost', port=6379, db=0) add_to_bloom_filter(r, 'bloomfilter_key', 'example_item') print(check_in_bloom_filter(r, 'bloomfilter_key', 'example_item')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值