CF 424D Biathlon Track

本文探讨了一种处理上下左右复杂比较问题的算法优化方法,通过预处理矩阵元素值来简化比较操作,并通过初始化函数实现高效计算路径值。重点介绍了路径值计算的四个方向:左到右、上到下、右到左、下到上,以及如何利用这些方向的值进行最终答案的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

处理上下左右比较麻烦,不知道y1被啥函数给占用了,每次都只能用y11

#include<iostream>
#include<cstdio>
using namespace std;

const int N=302;
int n,m,T,tp,tu,td;
int mp[N][N];
int up[N][N],down[N][N],l[N][N],r[N][N];

void init(){
    //左到右
    for(int i=1;i<=n;i++){
        for(int j=2;j<=m;j++){
            up[i][j]=up[i][j-1];
            if(mp[i][j-1]>mp[i][j])
                up[i][j]+=td;
            else if(mp[i][j-1]<mp[i][j])
                up[i][j]+=tu;
            else
                up[i][j]+=tp;
        }
    }
    //上到下
    for(int i=2;i<=n;i++){
        for(int j=1;j<=m;j++){
            r[i][j]=r[i-1][j];
            if(mp[i-1][j]>mp[i][j])
                r[i][j]+=td;
            else if(mp[i-1][j]<mp[i][j])
                r[i][j]+=tu;
            else
                r[i][j]+=tp;
        }
    }
    //右到左
    for(int i=1;i<=n;i++){
        for(int j=m-1;j>=1;j--){
            down[i][j]=down[i][j+1];
            if(mp[i][j+1]>mp[i][j])
                down[i][j]+=td;
            else if(mp[i][j+1]<mp[i][j])
                down[i][j]+=tu;
            else
                down[i][j]+=tp;
        }
    }
    //下到上
    for(int i=n-1;i>=0;i--){
        for(int j=1;j<=m;j++){
            l[i][j]=l[i+1][j];
            if(mp[i+1][j]>mp[i][j])
                l[i][j]+=td;
            else if(mp[i+1][j]<mp[i][j])
                l[i][j]+=tu;
            else
                l[i][j]+=tp;
        }
    }
}

int ans,x1,y11,x2,y2;
void solve(int x,int y){
    for(int i=1;i<=m;i++){
        int flag=1,rt=i+2;
        while(flag){
            if(rt>m) break ;
            int val=-T;
            val+=up[x][rt]-up[x][i];
            val+=r[y][rt]-r[x][rt];
            val+=down[y][i]-down[y][rt];
            val+=l[x][i]-l[y][i];
            if(val<0) val=-val;
            else flag=0;
            if(val<=ans){
                ans=val;
                x1=x;y11=i;
                x2=y;y2=rt;
            }
            rt++;
        }
    }
    return;
}
int main(){
    std::cin>>n>>m>>T;
    std::cin>>tp>>tu>>td;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++)
            scanf("%d",&mp[i][j]);
    }
    init();
    ans=1e9;
    for(int i=1;i<=n;i++){
        for(int j=i+2;j<=n;j++){
            solve(i,j);
            if(ans==0){
                goto out;
            }
        }
    }
out:;
    printf("%d %d %d %d\n",x1,y11,x2,y2);
    return 0;
}


内容概要:本文档是关于基于Tecnomatix的废旧智能手机拆解产线建模与虚拟调试的毕业设计任务书。研究内容主要包括:分析废旧智能手机拆解工艺流程;学习并使用Tecnomatix软件搭建拆解产线的三维模型,包括设备、输送装置等;进行虚拟调试以模拟各种故障情况,并对结果进行分析提出优化建议。研究周期为16周,涵盖了文献调研、拆解实验、软件学习、建模、调试和论文撰写等阶段。文中还提供了Python代码来模拟部分关键流程,如拆解顺序分析、产线布局设计、虚拟调试过程、故障模拟与分析等,并实现了结果的可视化展示。 适合人群:本任务书适用于机械工程、工业自动化及相关专业的本科毕业生,尤其是那些对智能制造、生产线优化及虚拟调试感兴趣的学生。 使用场景及目标:①帮助学生掌握Tecnomatix软件的应用技能;②通过实际项目锻炼学生的系统建模和虚拟调试能力;③培养学生解决复杂工程问题的能力,提高其对废旧电子产品回收再利用的认识和技术水平;④为后续的研究或工作打下坚实的基础,比如从事智能工厂规划、生产线设计与优化等工作。 其他说明:虽然文中提供了部分Python代码用于模拟关键流程,但完整的产线建模仍需借助Tecnomatix商业软件完成。此外,为了更好地理解和应用这些内容,建议学生具备一定的编程基础(如Python),并熟悉相关领域的基础知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值