CodeForces 424D Biathlon Track【二维dp】

本文探讨了在给定的土地上为奥林匹克滑雪比赛选择最佳滑雪道路径的问题,目标是在平均滑雪时间尽可能接近预定时间的情况下,找到覆盖时间最接近设定时间的矩形区域。该问题涉及计算从一个高度到另一个高度的上升、下降时间和平地移动时间,并通过算法求解最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Recently an official statement of the world Olympic Committee said that the Olympic Winter Games 2030 will be held in Tomsk. The city officials decided to prepare for the Olympics thoroughly and to build all the necessary Olympic facilities as early as possible. First, a biathlon track will be built.

To construct a biathlon track a plot of land was allocated, which is a rectangle divided into n × m identical squares. Each of the squares has two coordinates: the number of the row (from 1 to n), where it is located, the number of the column (from 1 to m), where it is located. Also each of the squares is characterized by its height. During the sports the biathletes will have to move from one square to another. If a biathlete moves from a higher square to a lower one, he makes a descent. If a biathlete moves from a lower square to a higher one, he makes an ascent. If a biathlete moves between two squares with the same height, then he moves on flat ground.

The biathlon track should be a border of some rectangular area of the allocated land on which biathletes will move in the clockwise direction. It is known that on one move on flat ground an average biathlete spends tp seconds, an ascent takes tu seconds, a descent takestd seconds. The Tomsk Administration wants to choose the route so that the average biathlete passes it in as close to t seconds as possible. In other words, the difference between time ts of passing the selected track and t should be minimum.

For a better understanding you can look at the first sample of the input data. In this sample n = 6, m = 7, and the administration wants the track covering time to be as close to t = 48 seconds as possible, also, tp = 3tu = 6 and td = 2. If we consider the rectangle shown on the image by arrows, the average biathlete can move along the boundary in a clockwise direction in exactly 48 seconds. The upper left corner of this track is located in the square with the row number 4, column number 3 and the lower right corner is at square with row number 6, column number 7.

Among other things the administration wants all sides of the rectangle which boundaries will be the biathlon track to consist of no less than three squares and to be completely contained within the selected land.

You are given the description of the given plot of land and all necessary time values. You are to write the program to find the most suitable rectangle for a biathlon track. If there are several such rectangles, you are allowed to print any of them.

Input

The first line of the input contains three integers nm and t (3 ≤ n, m ≤ 3001 ≤ t ≤ 109) — the sizes of the land plot and the desired distance covering time.

The second line also contains three integers tptu and td (1 ≤ tp, tu, td ≤ 100) — the time the average biathlete needs to cover a flat piece of the track, an ascent and a descent respectively.

Then n lines follow, each line contains m integers that set the heights of each square of the given plot of land. Each of the height values is a positive integer, not exceeding 106.

Output

In a single line of the output print four positive integers — the number of the row and the number of the column of the upper left corner and the number of the row and the number of the column of the lower right corner of the rectangle that is chosen for the track.

Sample Input

Input
6 7 48
3 6 2
5 4 8 3 3 7 9
4 1 6 8 7 1 1
1 6 4 6 4 8 6
7 2 6 1 6 9 4
1 9 8 6 3 9 2
4 5 6 8 4 3 7
Output
4 3 6 7

挺简单的题,就看你敢不敢O(n^4)写==都说了是4500ms了,放心大胆的写吧,就是注意,正着走和反着走虽说是同一条线段,但是值不一样啊!因为上下有区别啊!!

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[305][305][4];
int num[303][303];
int n,m,tp,tu,td,t;
int f(int a,int b)
{
    if(a>b) return td;
    else if(a==b) return tp;
    else return tu;
}
int main()
{
   // freopen("cin.txt","r",stdin);
    while(~scanf("%d%d%d",&n,&m,&t))
    {
        scanf("%d%d%d",&tp,&tu,&td);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                scanf("%d",&num[i][j]);
        for(int j=2;j<=m;j++){
            for(int i=1;i<=n;i++){
                dp[i][j][0]=dp[i][j-1][0]+f(num[i][j-1],num[i][j]);
            }
         }
         for(int j=m-1;j>=1;j--){
            for(int i=1;i<=n;i++){
                dp[i][j][2]=dp[i][j+1][2]+f(num[i][j+1],num[i][j]);
            }
         }
         for(int i=2;i<=n;i++){
            for(int j=1;j<=m;j++){
                dp[i][j][1]=dp[i-1][j][1]+f(num[i-1][j],num[i][j]);
            }
         }
         for(int i=n-1;i>=1;i--){
            for(int j=1;j<=m;j++){
                dp[i][j][3]=dp[i+1][j][3]+f(num[i+1][j],num[i][j]);
            }
         }

        int maxn=0x3f3f3f3f,x1,x2,y1,y2;
        bool flag=true;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                for(int ii=i+2;ii<=n;ii++){
                    for(int jj=j+2;jj<=m;jj++){
                        int t0=dp[i][jj][0]-dp[i][j][0];
                        int t1=dp[ii][jj][1]-dp[i][jj][1];
                        int t2=dp[ii][j][2]-dp[ii][jj][2];
                        int t3=dp[i][j][3]-dp[ii][j][3];
                        int dt=t0+t1+t2+t3;
                        int r=abs(dt-t);
                        if(r<maxn){
                            maxn=r;
                            x1=i;
                            y1=j;
                            x2=ii;
                            y2=jj;
                            if(maxn==0){
                                flag=false;
                            }
                        }
                    }
                }
            }
         }

        printf("%d %d %d %d\n",x1,y1,x2,y2);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值