论文笔记1.1——Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

  使用多任务级联的卷积神经网络将人脸检测与对准结合起来

  作者:张凯鹏,张展鹏,李志峰,IEEE高级会员,余乔,IEEE高级会员

Abstract—Face detection and alignment in unconstrained en-
vironment are challenging due to various poses, illuminations and
occlusions. Recent studies show that deep learning approaches
can achieve impressive performance on these two tasks. In this
paper, we propose a deep cascaded multi-task framework which
exploits the inherent correlation between them to boost up their
performance. In particular, our framework adopts a cascaded
structure with three stages of carefully designed deep convolu-
tional networks that predict face and landmark location in a
coarse-to-fine manner. In addition, in the learning process, we
propose a new online hard sample mining strategy that can im-
prove the performance automatically without manual sample
selection. Our method achieves superior accuracy over the
state-of-the-art techniques on the challenging FDDB and WIDER
FACE benchmark for face detection, and AFLW benchmark for
face alignment, while keeps real time performance.

摘要–(人脸校准(alignment)是给你一张脸,你给我找出我需要的特征点的位置,比如鼻子左侧,鼻孔下侧,瞳孔位置,上嘴唇下侧等等点的位置。如果觉得还是不明白,看下图:)在这里插入图片描述
图中红色框框就是在做detection,白色点点就是在做alignment。

由于多种多样的姿势,光照,遮挡的问题,在非限制场景下的人脸检测与校准是非常有挑战性的。

目前绝大多数的人脸识别数据集都是非限制场景下的,例如LFW。限制场景就是指基于某一特定环境下,比如一个证件照的数据集就是限制场景下,因为都是在同样的场景(差不多的背景,差不多的光照)下采集的。非限制场景则与之相反,例如LFW(Labeled Faces in the Wild)中的wild指的就是不限制某一特定场景下。
:弓長知行
链接:https://www.jianshu.com/p/506b7ef10b40
来源:简书
最近研究表明,深度学习的方法在人脸检测与校准这两个任务上的表现很好。在这篇论文中,我们提出了

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值