Control Chart as a Component of Seven Basic Quality Tool

本文详细解释了控制图的概念、组成部分及其在质量控制中的作用,包括如何确定过程是否处于控制状态以及如何开发控制图。通过实例分析,展示了如何使用控制图来识别过程变异性和稳定性,并提供了创建控制图的步骤和关键参数计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Control chart is a mechanism to understand process behaviour, predictability and stability over time. We do understand that any process has a certain amount of natural variability, but how can we tell if the process’s variability has gone “out of control”?

Control chart is a tool used in “Quality Control” for inferring an unplanned change has taken place in a process measured by a process continuous variable X. Example process variable could be but not limited to, like waiting time at a fast-food restaurant or at an airport check-in counter, schedule and cost variance over iterations, volume and frequency of scope changes over iterations, and other repetitive project management processes.

Control chart are normally developed for processes which are repetitive in nature, and expectation are set to perform around continuous process variable X.  A repeatable process is one in which process do the same thing in same way and produces the same results.

PMBOK® Guide fifth Edition defines Control chart as:

“A graphic display of data over time and against established control limits, which has a centreline that assists in detecting a trend of plotted values toward either control limits”

A control chart has following components:

  1. Centre line: Centre line in control chart is shown as desired ideal capability of a process. This is a graphical depiction of continuous process variable X. Centre line is the calculated mean of data points which are repetitive process output with time.
  2. Specification limit: Specification limits are established normally after analysis of customer expectations, sometime mentioned in agreements. Penalties may be associated if data points exceed to specification limit.
  3. Control Limits: Upper and lower control limits are established for the control chart and normally using statistical analysis or from historical records. Data points of a process are plotted to perform trend analysis toward either of control limits and with respect to centre line.

 
For repetitive process, the control limits are generally set at +_ 3 sigma around a process variable X or process mean i.e.  Centre Line. Upper control limit is drawn at 3 standard deviations above the process mean and lower control is drawn at 3 standard deviations below the centre line or process mean.

These limits are established to predict if process needs corrective action to bring process performance in line with needed stability and capability. Analysis of data points with centre line and control limits help us to prevent unnatural process performance with time. Control limits are more stringent from Specification Limits so that corrective actions are taken before data points start to reach towards specification limit.

Graphical representation of Control Chart Components:

Control-chart-6

How to determine process is “In Control” or “Out of control”:

Samples of data points as process output are taken and plotted over control chart, and then analysis is performed about how these data points are presented with respect to centre line and upper & lower control limit. Emphasis is to understand whether data points are within acceptable limits.

Data points within +- 3 sigma are thought as “in Control”, and within acceptable limits excluding the rule of seven (described later). Data points are within +-3 sigma means these data points are not crossing either of control limit. Anything beyond control limit requires investigation.

When 7 consecutive data points are presented on either side of mean, then “process is considered Out Control” based on heuristic of Rule of Seven.

In this case although data points are not crossing control limits but as repetitive process is not generating random output and this may be signal of problem in a process. Efforts are put to understand the situation and root of process problem.

In short, Process is considered out of control when data points are outside the upper or lower control limits and/or seven consecutive points are plotted on either side of mean i.e. centre line. We need to investigate both of special cause variance.

Development of Control Chart:

As I mentioned earlier that control charts are used to show whether a repetitive process is “in control” or “out of control”, I am taking an example of a process to test repetitive weekly builds. On an average Friday EOD we need to finish weekly build. Now we need to understand the acceptable range, observations states that sometime we get late by 1 or 2 days and sometime build gets finish early by a day.

Process Owner may accept build within 1 day late or early, but mathematically how we can say that acceptable variation would be one day or two days?

And if any week builds are finished at a point, where need of corrective action is identified; control chart is used to understand mathematic identification of control limits and need of corrective action.

Suppose we have collected 30 weeks of data to understand whether or not process output is within acceptable limits.

Control-chart

Now we need to calculate average of slippage in build for 30 weeks: Average of slippage of data points in days i.e. 0.73 days.

Now Standard deviation is calculated, standard deviation means how much variation from the average:

pmp-Conrtol-chart-formula

σ = the standard deviation

x = each value in the population

x̄ = the mean of the values

N = the number of values

Using above formula standard deviation will be 5.132273364.

In order to get control limits we need to multiply standard deviation with 3, in this case 3 sigma value will be 15.39682009.

Now it is time to calculate upper and lower control limit:

Upper control limit will be addition of 3 Sigma and average slippage in weeks i.e. addition of 15.39682009 and 0.73. As a result we will get 16.13 as upper control limit

Lower control limit will be subtraction of 3 Sigma from average slippage in weeks i.e. subtraction of 15.39682009 from 0.73. As a result we will get -14.66 as lower control limit

As to summarize:

Here 3 Sigma is equal to 15.39682009, Average mean of slippage in days is 0.73 days, Upper control limit is 16.13, and Lower control limit is -14.66.

Now finally control chart can be developed using 2D line graph plot:

Control-chart-5

Control chart (x) using mean + 3 sigma and mean – 3 sigma control limits

Now analysis of chart needs to be performed, and noticed that there are two data points (two weeks) which are beyond the control limits and that is what we need to do investigation further. As I mentioned earlier that control limit help us to determine that whether or not corrective action are in need. When data points are beyond control limit, it shows that variability is not natural.

Analysis of standard deviation and control chart states that we have such a poor variation that may be 15 days late or early, we need to investigate root of the problem and here we can use other tool like “Cause and Effect” diagram, “Pareto Analysis” for the same. After root cause analysis and taking corrective action, we can draw the control chart again and removing the special causes (the two weeks) and finds out whether variation is reducing with time.

One important point is that as we need to remove special cause i.e. two weeks, we may chose brainstorming tool to understand what events held during those two weeks that are contributing to special cause variation. In agile methodology this can be done as part of Iteration retrospective. In this case objective of iteration retrospective would be to determine what needs be done to bring testing process under control.

Usage of Control Chart:

Control Chart is used in “Plan Quality” to understand what is needed to make sure that processes which are repetitive in nature will produce results within acceptable limits. Process improvement plan are developed accordingly. Quality policies are refined to get the desired output and metrics are defined to measure the process performance. Historical records of control charts plays an important role in development of process improvement plan, quality management plan and quality metrics.

Control Chart is used as a tool and technique during “Control Quality” to understand whether repetitive process producing results within acceptable range and in random manner, if not then investigation need to be performed to remove special cause variation.

In short, control chart is an effective tool to understand whether process is stable with time and producing results within acceptable limits and in random manner.

I hope this blog has sufficiently answered your all queries related to Control Chart. Good Luck with your PMP® Certification Exam.

You can join the discussion on the same in our Forum. You may also want to check our other blogs PMP® Trainings.

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
内容概要:本文全面介绍了虚幻引擎4(UE4)的功能、应用场景、学习准备、基础操作、蓝图系统、材质与纹理、灯光与渲染等方面的内容。UE4是一款由Epic Games开发的强大游戏引擎,支持跨平台开发,广泛应用于游戏、虚拟现实、增强现实、建筑设计等领域。文章详细阐述了学习UE4前的硬件和软件准备,包括最低和推荐配置,以及Epic Games账户创建、启动器安装等步骤。接着介绍了UE4的界面组成和基本操作,如视口、内容浏览器、细节面板等。蓝图系统作为UE4的可视化脚本工具,极大降低了编程门槛,通过实例演练展示了蓝图的应用。材质与纹理部分讲解了材质编辑器的使用和纹理导入设置,灯光与渲染部分介绍了不同类型的灯光及其应用,以及后期处理和高质量图片渲染的方法。最后推荐了一些学习资源,包括官方文档、教程网站、论坛社区和书籍。 适合人群:对游戏开发感兴趣、希望学习UE4的初学者和有一定编程基础的研发人员。 使用场景及目标:①掌握UE4的基本操作和界面认知,为后续深入学习打下基础;②通过蓝图系统快速创建游戏逻辑,降低编程门槛;③学会材质与纹理的创建和设置,提升游戏画面的真实感;④掌握灯光与渲染技术,营造逼真的游戏氛围;⑤利用推荐的学习资源,加速UE4的学习进程。 阅读建议:本文内容详尽,涵盖了UE4的各个方面,建议读者按照章节顺序逐步学习,先从基础操作入手,再深入到蓝图、材质、灯光等高级功能。在学习过程中,结合实际项目进行练习,遇到问题时参考官方文档或社区论坛,不断积累经验和技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值