前言: 对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像 C/C++程序开发程序员这样为每一个 new 操作去写对应的
delete/free
操作,不容易出现内存泄漏和内存溢出问题。正是因为 Java 程序员把内存控制权利交给 Java 虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那么排查错误将会是一个非常艰巨的任务。
运行时数据区
内存是非常重要的系统资源,是硬盘和CPU的中间仓库及桥梁,承载着操作系统和应用程序的实时运行。JVM内存布局规定了Java在运行过程中内存申请、分配、管理的策略,保证了JVM的高效稳定运行。不同的 JVM 对于内存的划分方式和管理机制存在着部分差异。
Java虚拟机在执行Java程序的过程中会把它管理的内存划分成若干个不同的数据区域。
JDK 1.8 和之前的版本略有不同,我们这里以 JDK 1.7 和 JDK 1.8 这两个版本为例介绍。
JDK 1.7 和 JDK 1.8
Java 虚拟机定义了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机启动而创建,随着虚拟机退出而销毁。另外一些则是与线程一一对应的,这些与线程一一对应的数据区域会随着线程开始和结束而创建和销毁。
:::info
线程私有的:
- 程序计数器
- 虚拟机栈
- 本地方法栈(区)
线程共享的:
- 堆
- 方法区
- 直接内存(非运行时数据区的一部分)
- 堆外内存(Java7的永久代或JDK8的元空间、代码缓存)
:::
Java虚拟机规范对于运行时数据区域的规定是相当宽松的。以堆为例:堆可以是连续空间,也可以不连续。堆的大小可以固定,也可以在运行时按需扩展 。虚拟机实现者可以使用任何垃圾回收算法管理堆,甚至完全不进行垃圾收集也是可以的。
程序计数器
程序计数寄存器(Program Counter Register),Register 的命名源于 CPU 的寄存器,寄存器存储指令相关的线程信息,CPU 只有把数据装载到寄存器才能够运行。
这里,并非是广义上所指的物理寄存器,叫程序计数器(或PC计数器或指令计数器)会更加贴切,并且也不容易引起一些不必要的误会。JVM 中的 PC 寄存器是对物理PC寄存器的一种抽象模拟。
程序计数器(Program Counter Register, 寄存器) 是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。
另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为"线程私有"的内存。
从上面的介绍中我们知道了程序计数器主要作用:
-
PC 寄存器用来存储指向下一条指令的地址,即将要执行的指令代码。由执行引擎读取下一条指令。
-
字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
-
在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
:::danger
注意:程序计数器是唯一一个不会出现 OutOfMemoryError(内存溢出错误) 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。
特点: -
每个线程都有它自己的程序计数器, 是线程私有的, 生命周期与线程的生命周期一致
-
不会存在内存溢出
:::
// 二进制字节码 Java源代码
0: getstatic #20 // PrintStream out = System.out;
3: astore_1 // --
4: aload_1 // out.println(1);
5: iconst_1 // --
6: invokevirtual #26 // --
9: aload_1 // out.println(2);
10: iconst_2 // --
11: invokevirtual #26 // --
14: aload_1 // out.println(3);
15: iconst_3 // --
16: invokevirtual #26 // --
19: aload_1 // out.println(4);
20: iconst_4 // --
21: invokevirtual #26 // --
24: aload_1 // out.println(5);
25: iconst_5 // --
26: invokevirtual #26 // --
29: return
(分析:进入class文件所在目录,执行javap -v xx.class
反解析(或者通过 IDEA 插件 Jclasslib 直接查看,上图),可以看到当前类对应的Code区(汇编指令)、本地变量表、异常表和代码行偏移量映射表、常量池等信息。)
- 解释器会解释指令为机器码交给 cpu 执行,程序计数器会记录下一条指令的地址行号,这样下一次解释器会从程序计数器拿到指令然后进行解释执行。
- 多线程的环境下,如果两个线程发生了上下文切换,那么程序计数器会记录线程下一行指令的地址行号,以便于接着往下执行。
使用PC寄存器存储字节码指令地址有什么用呢?为什么使用PC寄存器记录当前线程的执行地址呢?
因为CPU需要不停的切换各个线程,这时候切换回来以后,就得知道接着从哪开始继续执行。JVM的字节码解释器就需要通过改变PC寄存器的值来明确下一条应该执行什么样的字节码指令。
PC寄存器为什么会被设定为线程私有的?
多线程在一个特定的时间段内只会执行其中某一个线程方法,CPU会不停的做任务切换,这样必然会导致经常中断或恢复。为了能够准确的记录各个线程正在执行的当前字节码指令地址,所以为每个线程都分配了一个PC寄存器,每个线程都独立计算,不会互相影响。
虚拟机栈
虚拟机栈概述
Java虚拟机栈(Java Virtual Machine Stacks)
- 与程序计数器一样,Java虚拟机栈(后文简称栈) 也是线程私有的,它的生命周期和线程相同,随着线程的创建而创建,随着线程的死亡而死亡。
- 栈绝对算的上是 JVM 运行时数据区域的一个核心,除了一些 Native方法调用是通过本地方法栈实现的(后面会提到),其他所有的 Java方法调用都是通过栈来实现的(也需要和其他运行时数据区域比如程序计数器配合)
- 栈由一个个栈帧(Frame)组成,栈帧对应着每个方法运行时所需要占用的内存,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法返回地址。和数据结构上的栈类似,两者都是先进后出的数据结构,只支持出栈和入栈两种操作。每个线程只能有一个活动栈帧,对应着当前正在执行的方法
- 方法调用的数据需要通过 栈 进行传递,每一次方法调用都会有一个对应的 栈帧 被压入栈中,每一个方法调用结束后,都会有一个 栈帧 被弹出。
虚拟机栈的作用: 主管 Java 程序的运行,它保存方法的局部变量、部分结果,并参与方法的调用和返回。
**虚拟机栈的特点: **
- 栈是一种快速有效的分配存储方式,访问速度仅次于程序计数器
- JVM 直接对虚拟机栈的操作只有两个:每个方法执行,伴随着入栈(进栈/压栈),方法执行结束出栈
- 栈不存在垃圾回收问题
局部变量表 主要存放了编译期可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。
动态链接 主要服务一个方法需要调用其他方法的场景。Class 文件的常量池里保存有大量的符号引用比如方法引用的符号引用。当一个方法要调用其他方法,需要将常量池中指向方法的符号引用转化为其在内存地址中的直接引用。动态链接的作用就是为了将符号引用转换为调用方法的直接引用,这个过程也被称为 动态连接 。
栈空间虽然不是无限的,但一般正常调用的情况下是不会出现问题的。不过,如果函数调用陷入无限循环的话,就会导致栈中被压入太多栈帧而占用太多空间,导致栈空间过深。那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出 StackOverFlowError 错误。
Java 方法有两种返回方式,一种是 return 语句正常返回,一种是抛出异常。不管哪种返回方式,都会导致栈帧被弹出。也就是说, 栈帧随着方法调用而创建,随着方法结束而销毁。无论方法正常完成还是异常完成都算作方法结束。
除了 StackOverFlowError 错误之外,栈还可能会出现OutOfMemoryError错误,这是因为如果栈的内存大小可以动态扩展, 如果虚拟机在动态扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。
:::danger
简单总结一下程序运行中栈可能会出现两种错误:
Java 虚拟机规范允许 Java虚拟机栈的大小是 动态的 或者 是固定不变的
- StackOverFlowError: 若栈的内存大小不允许动态扩展(栈内存固定大小的),那每个线程的 Java虚拟机栈容量可以在线程创建的时候独立选定。那么当线程请求分配的栈的深度(容量)超过当前 Java虚拟机栈的最大深度的时候,Java虚拟机就抛出 StackOverFlowError 错误。
- OutOfMemoryError: 如果栈的内存大小可以动态扩展, 如果虚拟机在动态扩展栈时无法申请到足够的内存空间,,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,则抛出OutOfMemoryError异常。
可以通过参数-Xss来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度。
官方提供的参考工具,可查一些参数和操作:https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html#BGBCIEFC
:::
:::info
问题辨析:
垃圾回收是否涉及栈内存? 不会。栈内存是方法调用产生的,方法调用结束后会弹出栈。
栈内存分配越大越好吗? 不是。因为物理内存是一定的,栈内存越大,可以支持更多的递归调用,但是可执行的线程数就会越少。
方法内的局部变量是否线程安全?
- 如果方法内部的变量没有逃离方法的作用访问,它是线程安全的
- 如果是局部变量引用了对象,并逃离了方法的访问,那就要考虑线程安全问题。
:::
栈的存储单位
栈中存储什么?
- 每个线程都有自己的栈,栈中的数据都是以栈帧(Stack Frame)的格式存在
- 在这个线程上正在执行的每个方法都各自有对应的一个栈帧
- 栈帧是一个内存区块,是一个数据集,维系着方法执行过程中的各种数据信息
栈的运行原理
- JVM 直接对 Java 栈的操作只有两个,对栈帧的压栈和出栈,遵循"先进后出/后进先出"原则
- 在一条活动线程中,一个时间点上,只会有一个活动的栈帧。即只有当前正在执行的方法的栈帧(栈顶栈帧)是有效的,这个栈帧被称为当前栈帧(Current Frame),与当前栈帧对应的方法就是当前方法(Current Method),定义这个方法的类就是当前类(Current Class)
- 执行引擎运行的所有字节码指令只针对当前栈帧进行操作
- 如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,放在栈的顶端,称为新的当前栈帧
- 不同线程中所包含的栈帧是不允许存在相互引用的,即不可能在一个栈帧中引用另外一个线程的栈帧
- 如果当前方法调用了其他方法,方法返回之际,当前栈帧会传回此方法的执行结果给前一个栈帧,接着,虚拟机会丢弃当前栈帧,使得前一个栈帧重新成为当前栈帧
- Java 方法有两种返回函数的方式,一种是正常的函数返回,使用 return 指令,另一种是抛出异常,不管用哪种方式,都会导致栈帧被弹出
IDEA 在 debug 时候,可以在 debug窗口 看到 Frames 中各种方法的压栈和出栈情况
栈帧的内部结构
每个栈帧(Stack Frame)中存储着:
- 局部变量表(Local Variables)
- 操作数栈(Operand Stack)(或称为表达式栈)
- 动态链接(Dynamic Linking):指向运行时常量池的方法引用
- 方法返回地址(Return Address):方法正常退出或异常退出的地址
- 一些附加信息
局部变量表
- 局部变量表也被称为局部变量数组或者本地变量表
- 是一组变量值存储空间,主要用于存储方法参数和定义在方法体内的局部变量,包括编译器可知的各种 Java 虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此相关的位置)和 returnAddress 类型(指向了一条字节码指令的地址,已被异常表取代)
- 由于局部变量表是建立在线程的栈上,是线程的私有数据,因此不存在数据安全问题
- 局部变量表所需要的容量大小是编译期确定下来的,并保存在方法的 Code 属性的 maximum local variables 数据项中。在方法运行期间是不会改变局部变量表的大小的
- 方法嵌套调用的次数由栈的大小决定。一般来说,栈越大,方法嵌套调用次数越多。对一个函数而言,它的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以满足方法调用所需传递的信息增大的需求。进而函数调用就会占用更多的栈空间,导致其嵌套调用次数就会减少。
- 局部变量表中的变量只在当前方法调用中有效。在方法执行时,虚拟机通过使用局部变量表完成参数值到参数变量列表的传递过程。当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。
- 参数值的存放总是在局部变量数组的 index0 开始,到数组长度 -1 的索引结束
槽
- 局部变量表最基本的存储单元是Slot(变量槽)
- 在局部变量表中,32 位以内的类型只占用一个 Slot(包括returnAddress类型),64 位的类型(long和double)占用两个连续的 Slot
- byte、short、char 在存储前被转换为int,boolean也被转换为int,0 表示 false,非 0 表示 true
- long 和 double 则占据两个 Slot
- JVM 会为局部变量表中的每一个 Slot 都分配一个访问索引,通过这个索引即可成功访问到局部变量表中指定的局部变量值,索引值的范围从 0 开始到局部变量表最大的 Slot 数量
- 当一个实例方法被调用的时候,它的方法参数和方法体内部定义的局部变量将会按照顺序被复制到局部变量表中的每一个 Slot 上
- 如果需要访问局部变量表中一个 64bit 的局部变量值时,只需要使用前一个索引即可。(比如:访问 long 或 double 类型变量,不允许采用任何方式单独访问其中的某一个 Slot)
- 如果当前帧是由构造方法或实例方法创建的,那么该对象引用 this 将会存放在 index 为 0 的 Slot 处,其余的参数按照参数表顺序继续排列(这里就引出一个问题:静态方法中为什么不可以引用 this,就是因为this 变量不存在于当前方法的局部变量表中)
- 栈帧中的局部变量表中的槽位是可以重用的,如果一个局部变量过了其作用域,那么在其作用域之后申明的新的局部变量就很有可能会复用过期局部变量的槽位,从而达到节省资源的目的。(下图中,this、a、b、c 理论上应该有 4 个变量,c 复用了 b 的槽)
- 在栈帧中,与性能调优关系最为密切的就是局部变量表。在方法执行时,虚拟机使用局部变量表完成方法的传递
- 局部变量表中的变量也是重要的垃圾回收根节点,只要被局部变量表中直接或间接引用的对象都不会被回收
操作数栈
- 每个独立的栈帧中除了包含局部变量表之外,还包含一个后进先出(Last-In-First-Out)的操作数栈,也可以称为表达式栈(Expression Stack)
- 操作数栈,在方法执行过程中,根据字节码指令,往操作数栈中写入数据或提取数据,即入栈(push)、出栈(pop)
- 某些字节码指令将值压入操作数栈,其余的字节码指令将操作数取出栈。使用它们后再把结果压入栈。比如,执行复制、交换、求和等操作
操作数栈概述:
- 操作数栈,主要用于保存计算过程的中间结果,同时作为计算过程中变量临时的存储空间
- 操作数栈就是 JVM 执行引擎的一个工作区,当一个方法刚开始执行的时候,一个新的栈帧也会随之被创建出来,此时这个方法的操作数栈是空的
- 每一个操作数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译期就定义好了,保存在方法的 Code 属性的 max_stack 数据项中
- 栈中的任何一个元素都可以是任意的 Java 数据类型
- 32bit 的类型占用一个栈单位深度
- 64bit 的类型占用两个栈单位深度
- 操作数栈并非采用访问索引的方式来进行数据访问的,而是只能通过标准的入栈和出栈操作来完成一次数据访问
- 如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中,并更新 PC 寄存器中下一条需要执行的字节码指令
- 操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,这由编译器在编译期间进行验证,同时在类加载过程中的类检验阶段的数据流分析阶段要再次验证
- 另外,我们说Java虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操作数栈
栈顶缓存(Top-of-stack-Cashing)
HotSpot 的执行引擎采用的并非是基于寄存器的架构,但这并不代表 HotSpot VM 的实现并没有间接利用到寄存器资源。寄存器是物理 CPU 中的组成部分之一,它同时也是 CPU 中非常重要的高速存储资源。一般来说,寄存器的读/写速度非常迅速,甚至可以比内存的读/写速度快上几十倍不止,不过寄存器资源却非常有限,不同平台下的CPU 寄存器数量是不同和不规律的。寄存器主要用于缓存本地机器指令、数值和下一条需要被执行的指令地址等数据。
基于栈式架构的虚拟机所使用的零地址指令更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数。由于操作数是存储在内存中的,因此频繁的执行内存读/写操作必然会影响执行速度。为了解决这个问题,HotSpot JVM 设计者们提出了栈顶缓存技术,将栈顶元素全部缓存在物理 CPU 的寄存器中,以此降低对内存的读/写次数,提升执行引擎的执行效率
动态链接(指向运行时常量池的方法引用)
- 每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用。包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。
- 在 Java 源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference) 保存在 Class 文件的常量池中。比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接引用
JVM 是如何执行方法调用的
方法调用不同于方法执行,方法调用阶段的唯一任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不涉及方法内部的具体运行过程。Class 文件的编译过程中不包括传统编译器中的连接步骤,一切方法调用在 Class文件里面存储的都是符号引用,而不是方法在实际运行时内存布局中的入口地址(直接引用)。也就是需要在类加载阶段,甚至到运行期才能确定目标方法的直接引用。
在 JVM 中,将符号引用转换为调用方法的直接引用与方法的绑定机制有关
- 静态链接:当一个字节码文件被装载进 JVM 内部时,如果被调用的目标方法在编译期可知,且运行期保持不变时。这种情况下将调用方法的符号引用转换为直接引用的过程称之为静态链接
- 动态链接:如果被调用的方法在编译期无法被确定下来,也就是说,只能在程序运行期将调用方法的符号引用转换为直接引用,由于这种引用转换过程具备动态性,因此也就被称之为动态链接
对应的方法的绑定机制为:早期绑定(Early Binding)和晚期绑定(Late Binding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。
- 早期绑定:早期绑定就是指被调用的目标方法如果在编译期可知,且运行期保持不变时,即可将这个方法与所属的类型进行绑定,这样一来,由于明确了被调用的目标方法究竟是哪一个,因此也就可以使用静态链接的方式将符号引用转换为直接引用。
- 晚期绑定:如果被调用的方法在编译器无法被确定下来,只能够在程序运行期根据实际的类型绑定相关的方法,这种绑定方式就被称为晚期绑定
虚方法和非虚方法
- 如果方法在编译器就确定了具体的调用版本,这个版本在运行时是不可变的。这样的方法称为非虚方法,比如静态方法、私有方法、final 方法、实例构造器、父类方法都是非虚方法
- 其他方法称为虚方法
虚方法表
在面向对象编程中,会频繁的使用到动态分派,如果每次动态分派都要重新在类的方法元数据中搜索合适的目标有可能会影响到执行效率。为了提高性能,JVM 采用在类的方法区建立一个虚方法表(virtual method table),使用索引表来代替查找。非虚方法不会出现在表中。
每个类中都有一个虚方法表,表中存放着各个方法的实际入口。
虚方法表会在类加载的连接阶段被创建并开始初始化,类的变量初始值准备完成之后,JVM 会把该类的方法表也初始化完毕。
方法返回地址(return address)
用来存放调用该方法的 PC 寄存器的值。
一个方法的结束,有两种方式
- 正常执行完成
- 出现未处理的异常,非正常退出
无论通过哪种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的 PC 计数器的值作为返回地址,即调用该方法的指令的下一条指令的地址。而通过异常退出的,返回地址是要通过异常表来确定的,栈帧中一般不会保存这部分信息。
当一个方法开始执行后,只有两种方式可以退出这个方法:
- 执行引擎遇到任意一个方法返回的字节码指令,会有返回值传递给上层的方法调用者,简称正常完成出口一个方法的正常调用完成之后究竟需要使用哪一个返回指令还需要根据方法返回值的实际数据类型而定在字节码指令中,返回指令包含 ireturn(当返回值是 boolean、byte、char、short 和 int 类型时使用)、lreturn、freturn、dreturn 以及 areturn,另外还有一个 return 指令供声明为 void 的方法、实例初始化方法、类和接口的初始化方法使用。
- 在方法执行的过程中遇到了异常,并且这个异常没有在方法内进行处理,也就是只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出。简称异常完成出口方法执行过程中抛出异常时的异常处理,存储在一个异常处理表,方便在发生异常的时候找到处理异常的代码。
本质上,方法的退出就是当前栈帧出栈的过程。此时,需要恢复上层方法的局部变量表、操作数栈、将返回值压入调用者栈帧的操作数栈、设置PC寄存器值等,让调用者方法继续执行下去。
正常完成出口和异常完成出口的区别在于:通过异常完成出口退出的不会给他的上层调用者产生任何的返回值
附加信息
栈帧中还允许携带与 Java 虚拟机实现相关的一些附加信息。例如,对程序调试提供支持的信息,但这些信息取决于具体的虚拟机实现。
栈内存溢出
栈帧过大、过多、或者第三方类库操作,都有可能造成栈内存溢出java.lang.stackOverflowError
,使用-Xss256k
指定栈内存大小为256k
线程运行诊断
案例一:cpu 占用过多
解决方法:Linux 环境下运行某些程序的时候,可能导致 CPU 的占用过高,这时需要定位占用 CPU 过高的线程
top
命令,查看是哪个进程占用 CPU 过高ps H -eo pid, tid, %cpu | grep
(线程id) 刚才通过top
查到的进程号 通过ps
命令进一步查看是哪个线程占用 CPU 过高
jstack 进程id
通过查看进程中的线程的nid
,刚才通过ps
命令看到的 tid 来对比定位,注意jstack
查找出的线程id是16进制的,需要转换。
本地方法栈
本地方法接口
简单的讲,一个 Native Method 就是一个 Java 调用非 Java 代码的接口。我们知道的 Unsafe 类就有很多本地方法
Java 使用起来非常方便,然而有些层次的任务用 Java 实现起来也不容易,或者我们对程序的效率很在意时,问题就来了
- 与 Java 环境外交互:有时 Java 应用需要与 Java 外面的环境交互,这就是本地方法存在的原因。
- 与操作系统交互:JVM 支持 Java 语言本身和运行时库,但是有时仍需要依赖一些底层系统的支持。通过本地方法,我们可以实现用 Java 与实现了 jre 的底层系统交互, JVM 的一些部分就是 C 语言写的。
- Sun’s Java:Sun的解释器就是C实现的,这使得它能像一些普通的C一样与外部交互。jre大部分都是用 Java 实现的,它也通过一些本地方法与外界交互。比如,类
java.lang.Thread
的setPriority()
的方法是用Java 实现的,但它实现调用的是该类的本地方法setPrioruty()
,该方法是C实现的,并被植入 JVM 内部
本地方法栈(Native Method Stack)
一些带有native
关键字的方法就是需要 JAVA 去调用本地的C或者C++方法, 因为 JAVA 有时候没法直接和操作系统底层交互, 所以需要用到本地方法栈, 服务于带native
关键字的方法
本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。
- Java 虚拟机栈用于管理 Java 方法的调用,而本地方法栈用于管理本地方法的调用
- 和虚拟机栈所发挥的作用非常相似, 区别是: 虚拟机栈为虚拟机执行 Java 方法(也就是字节码) 服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中, 直接将本地方法和Java虚拟机栈合二为一。
- 本地方法栈也是线程私有的
- 允许线程固定或者可动态扩展的内存大小
- 方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和 OutOfMemoryError 两种错误。
- 如果线程请求分配的栈容量超过本地方法栈允许的最大容量,Java 虚拟机将会抛出一个 StackOverflowError 异常
- 如果本地方法栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的本地方法栈,那么 Java虚拟机将会抛出一个OutofMemoryError异常
- 本地方法是使用 C 语言实现的
- 它的具体做法是 Native Method Stack 中登记 native 方法,在 Execution Engine 执行时加载本地方法库当某个线程调用一个本地方法时,它就进入了一个全新的并且不再受虚拟机限制的世界。它和虚拟机拥有同样的权限。
- 本地方法可以通过本地方法接口来访问虚拟机内部的运行时数据区,它甚至可以直接使用本地处理器中的寄存器,直接从本地内存的堆中分配任意数量的内存
- 并不是所有 JVM 都支持本地方法。因为 Java 虚拟机规范并没有明确要求本地方法栈的使用语言、具体实现方式、数据结构等。如果 JVM 产品不打算支持 native 方法,也可以无需实现本地方法栈
:::info
栈是运行时的单位,而堆是存储的单位。
栈解决程序的运行问题,即程序如何执行,或者说如何处理数据。堆解决的是数据存储的问题,即数据怎么放、放在哪。
:::
堆
堆概述
Heap 堆, 通过new
关键字创建的对象都会被放在堆内存
Java 虚拟机所管理的内存中最大的一块,Java堆 是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。
Java 世界中“几乎”所有的对象都在堆中分配,但是,随着 JIT编译器 的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。从 JDK 1.7 开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。
Java堆 是垃圾收集器管理的主要区域,因此也被称作 GC堆(Garbage Collected Heap)。从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代;再细致一点有:Eden、Survivor、Old 等空间。进一步划分的目的是更好地回收内存,或者更快地分配内存。
:::info
特点
- 它是线程共享,堆内存中的对象都需要考虑线程安全问题
- 有垃圾回收机制, 堆中不再进行引用的对象就会被回收来释放内存
:::
内存划分
为了进行高效的垃圾回收,虚拟机把堆内存逻辑上划分成三块区域(分代的唯一理由就是优化 GC 性能):
在 JDK8 版本之前,堆内存被通常分为下面三部分:
- 新生代内存(Young Generation, 年轻代): 新对象和没达到一定年龄的对象都在新生代
- 老生代(Old Generation, 老年代): 被长时间使用的对象,老年代的内存空间应该要比年轻代更大
- 永久代(Permanent Generation, JDK1.8及以后叫元空间): 像一些方法中的操作临时对象等,JDK1.8 之前是占用 JVM内存,JDK1.8 之后直接使用物理内存
下图所示的 Eden 区、两个 Survivor 区 S0 和 S1 都属于新生代,中间一层属于老年代,最下面一层属于永久代。
:::info
Java 虚拟机规范规定,Java堆可以是处于物理上不连续的内存空间中,只要逻辑上是连续的即可,像磁盘空间一样。实现时,既可以是固定大小,也可以是可扩展的,主流虚拟机都是可扩展的(通过-Xmx
和-Xms
控制),如果堆中没有完成实例分配,并且堆无法再扩展时,就会抛出 OutOfMemoryError 异常。
:::
JDK 8 版本之后 PermGen(永久代) 已被 Metaspace(元空间) 取代,元空间使用的是本地内存。 (我会在方法区这部分内容详细介绍到)。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 S0 或者 S1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold
来设置。
上图引用地址
年轻代(Young Generation)
年轻代是所有新对象创建的地方。当填充年轻代时,执行垃圾收集。这种垃圾收集称为 Minor GC。年轻一代被分为三个部分——伊甸园(Eden Memory) 和 两个幸存区(Survivor Memory,被称为from/to或s0/s1),默认比例是8:1:1
- 大多数新创建的对象都位于 Eden内存空间中
- 当 Eden空间被对象填充时,执行Minor GC,并将所有幸存者对象移动到一个幸存者空间中
- Minor GC 检查幸存者对象,并将它们移动到另一个幸存者空间。所以每次,一个幸存者空间总是空的
- 经过多次 GC 循环后存活下来的对象被移动到老年代。通常,这是通过设置年轻一代对象的年龄阈值来实现的,然后他们才有资格提升到老一代
老年代(Old Generation)
旧的一代内存包含那些经过许多轮小型GC 后仍然存活的对象。通常,垃圾收集是在老年代内存满时执行的。老年代垃圾收集称为 主GC(Major GC),通常需要更长的时间。
大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在 Eden区 和 两个Survivor区 之间发生大量的内存拷贝
元空间
不管是 JDK8 之前的永久代,还是 JDK8 及以后的元空间,都可以看作是 Java虚拟机规范中方法区的实现。
虽然 Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫 Non-Heap(非堆),目的应该是与 Java 堆区分开。
所以元空间放在后边的方法区再说
堆内存溢出
java.lang.OutofMemoryError
: java heap space. 堆内存溢出, 可以使用-Xmx8m
来指定堆内存大小。
堆这里最容易出现的就是 OutOfMemoryError错误,并且出现这种错误之后的表现形式还会有几种,比如:
- java.lang.OutOfMemoryError: GC Overhead Limit Exceeded:当 JVM 花太多时间执行垃圾回收并且只能回收很少的堆空间时,就会发生此错误。
- java.lang.OutOfMemoryError: Java heap space :假如在创建新的对象时, 堆内存中的空间不足以存放新创建的对象, 就会引发此错误。(和配置的最大堆内存有关,且受制于物理内存大小。最大堆内存可通过-Xmx参数配置,若没有特别配置,将会使用默认值,详见:What is the default max heap size (-Xmx) in Java 8?)
设置堆内存大小和OOM
OOM内存溢出
Java 堆用于存储 Java 对象实例,那么堆的大小在 JVM 启动的时候就确定了,我们可以通过-Xmx
和-Xms
来设定
-Xms
用来表示堆的起始内存,等价于-XX:InitialHeapSize
-Xmx
用来表示堆的最大内存,等价于-XX:MaxHeapSize
如果堆的内存大小超过-Xmx
设定的最大内存, 就会抛出 OutOfMemoryError异常。
我们通常会将-Xmx
和-Xms
两个参数配置为相同的值,其目的是为了能够在垃圾回收机制清理完堆区后不再需要重新分隔计算堆的大小,从而提高性能
- 默认情况下,初始堆内存大小为:电脑内存大小/64
- 默认情况下,最大堆内存大小为:电脑内存大小/4
可以通过代码获取到我们的设置值,当然也可以模拟 OOM:
public static void main(String[] args) {
//返回 JVM 堆大小
long initalMemory = Runtime.getRuntime().totalMemory() / 1024 /1024;
//返回 JVM 堆的最大内存
long maxMemory = Runtime.getRuntime().maxMemory() / 1024 /1024;
System.out.println("-Xms : "+initalMemory + "M");
System.out.println("-Xmx : "+maxMemory + "M");
System.out.println("系统内存大小:" + initalMemory * 64 / 1024 + "G");
System.out.println("系统内存大小:" + maxMemory * 4 / 1024 + "G");
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
查看 JVM 堆内存分配
- 在默认不配置 JVM 堆内存大小的情况下,JVM 根据默认值来配置当前内存大小
- 默认情况下 新生代和老年代 的比例是
1:2
,可以通过–XX:NewRatio
来配置- 新生代中的 Eden:From Survivor:To Survivor 的比例是 8:1:1,可以通过 -XX:SurvivorRatio 来配置
- 若在 JDK 7 中开启了
-XX:+UseAdaptiveSizePolicy
,JVM 会动态调整 JVM 堆中各个区域的大小以及进入老年代的年龄此时–XX:NewRatio
和-XX:SurvivorRatio
将会失效,而 JDK 8 是默认开启-XX:+UseAdaptiveSizePolicy
在 JDK 8中,不要随意关闭-XX:+UseAdaptiveSizePolicy
,除非对堆内存的划分有明确的规划
每次 GC 后都会重新计算 Eden、From Survivor、To Survivor 的大小
计算依据是GC过程中统计的GC时间、吞吐量、内存占用量
java -XX:+PrintFlagsFinal -version | grep HeapSize
uintx ErgoHeapSizeLimit = 0 {product}
uintx HeapSizePerGCThread = 87241520 {product}
uintx InitialHeapSize := 134217728 {product}
uintx LargePageHeapSizeThreshold = 134217728 {product}
uintx MaxHeapSize := 2147483648 {product}
java version "1.8.0_211"
Java(TM) SE Runtime Environment (build 1.8.0_211-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.211-b12, mixed mode)
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
$ jmap -heap 进程号
对象在堆中的生命周期
- 在 JVM 内存模型的堆中,堆被划分为新生代和老年代
- 新生代又被进一步划分为 Eden区 和 Survivor区,Survivor 区由 From Survivor 和 To Survivor 组成
- 当创建一个对象时,对象会被优先分配到新生代的 Eden 区
- 此时 JVM 会给对象定义一个对象年轻计数器(
-XX:MaxTenuringThreshold
)
- 此时 JVM 会给对象定义一个对象年轻计数器(
- 当 Eden 空间不足时,JVM 将执行新生代的垃圾回收(Minor GC)
- JVM 会把存活的对象转移到 Survivor 中,并且对象年龄 +1
- 对象在 Survivor 中同样也会经历 Minor GC,每经历一次 Minor GC,对象年龄都会+1
- 如果分配的对象超过了
-XX:PetenureSizeThreshold
,对象会直接被分配到老年代
对象的分配过程
为对象分配内存是一件非常严谨和复杂的任务,JVM 的设计者们不仅需要考虑内存如何分配、在哪里分配等问题,并且由于内存分配算法和内存回收算法密切相关,所以还需要考虑 GC 执行完内存回收后是否会在内存空间中产生内存碎片。
- new 的对象先放在伊甸园区,此区有大小限制
- 当伊甸园的空间填满时,程序又需要创建对象,JVM 的垃圾回收器将对伊甸园区进行垃圾回收(Minor GC),将伊甸园区中的不再被其他对象所引用的对象进行销毁。再加载新的对象放到伊甸园区
- 然后将伊甸园中的剩余对象移动到幸存者 0 区
- 如果再次触发垃圾回收,此时上次幸存下来的放到幸存者 0 区,如果没有回收,就会放到幸存者 1 区
- 如果再次经历垃圾回收,此时会重新放回幸存者 0 区,接着再去幸存者 1 区
- 什么时候才会去养老区呢? 默认是 15 次回收标记
- 在养老区,相对悠闲。当养老区内存不足时,再次触发 Major GC,进行养老区的内存清理
- 若养老区执行了 Major GC 之后发现依然无法进行对象的保存,就会产生 OOM 异常
GC垃圾回收简介
Minor GC、Major GC、Full GC
JVM 在进行 GC 时,并非每次都对堆内存(新生代、老年代;方法区)区域一起回收的,大部分时候回收的都是指新生代。
针对 HotSpot VM 的实现,它里面的 GC 按照回收区域又分为两大类:部分收集(Partial GC),整堆收集(Full GC)
部分收集(Partial GC):不是完整收集整个 Java 堆的垃圾收集。其中又分为:
- 新生代收集(Minor GC/Young GC):只是新生代的垃圾收集
- 老年代收集(Major GC/Old GC):只是老年代的垃圾收集
- 目前,只有 CMS GC 会有单独收集老年代的行为
- 很多时候 Major GC 会和 Full GC 混合使用,需要具体分辨是老年代回收还是整堆回收
- 混合收集(Mixed GC):收集整个新生代以及部分老年代的垃圾收集
- 目前只有 G1 GC 会有这种行为
整堆收集(Full GC):收集整个 Java 堆和方法区的垃圾
TLAB
什么是TLAB(Thread Local Allocation Buffer)?
- 从内存模型而不是垃圾回收的角度,对 Eden 区域继续进行划分,JVM 为每个线程分配了一个私有缓存区域,它包含在 Eden 空间内
- 多线程同时分配内存时,使用 TLAB 可以避免一系列的非线程安全问题,同时还能提升内存分配的吞吐量,因此我们可以将这种内存分配方式称为快速分配策略
- OpenJDK 衍生出来的 JVM 大都提供了 TLAB 设计
为什么要有TLAB?
- 堆区是线程共享的,任何线程都可以访问到堆区中的共享数据
- 由于对象实例的创建在 JVM 中非常频繁,因此在并发环境下从堆区中划分内存空间是线程不安全的
- 为避免多个线程操作同一地址,需要使用加锁等机制,进而影响分配速度
尽管不是所有的对象实例都能够在 TLAB 中成功分配内存,但 JVM 确实是将 TLAB 作为内存分配的首选。
在程序中,可以通过-XX:UseTLAB
设置是否开启 TLAB 空间。
默认情况下,TLAB 空间的内存非常小,仅占有整个 Eden 空间的 1%,我们可以通过-XX:TLABWasteTargetPercent
设置 TLAB 空间所占用 Eden 空间的百分比大小。
一旦对象在 TLAB 空间分配内存失败时,JVM 就会尝试着通过使用加锁机制确保数据操作的原子性,从而直接在 Eden 空间中分配内存。
堆是分配对象存储的唯一选择吗?
随着 JIT 编译期的发展和逃逸分析技术的逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。 ——《深入理解 Java 虚拟机》
逃逸分析
逃逸分析(Escape Analysis)是目前 Java 虚拟机中比较前沿的优化技术。这是一种可以有效减少 Java 程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。通过逃逸分析,Java Hotspot 编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。
逃逸分析的基本行为就是分析对象动态作用域:
- 当一个对象在方法中被定义后,对象只在方法内部使用,则认为没有发生逃逸。
- 当一个对象在方法中被定义后,它被外部方法所引用,则认为发生逃逸。例如作为调用参数传递到其他地方中,称为方法逃逸。
public static StringBuffer craeteStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb;
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
StringBuffer sb
是一个方法内部变量,上述代码中直接将sb
返回,这样这个 StringBuffer 有可能被其他方法所改变,这样它的作用域就不只是在方法内部,虽然它是一个局部变量,但是其逃逸到了方法外部。甚至还有可能被外部线程访问到,譬如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸。
上述代码如果想要StringBuffer sb
不逃出方法,可以这样写:
public static String createStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb.toString();
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
不直接返回 StringBuffer,那么 StringBuffer 将不会逃逸出方法。
参数设置:
- 在 JDK 6u23 版本之后,HotSpot 中默认就已经开启了逃逸分析
- 如果使用较早版本,可以通过
-XX"+DoEscapeAnalysis
显式开启
开发中使用局部变量,就不要在方法外定义。
使用逃逸分析,编译器可以对代码做优化:
- 栈上分配:将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配
- 同步省略:如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步
- 分离对象或标量替换:有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而存储在 CPU 寄存器
JIT 编译器在编译期间根据逃逸分析的结果,发现如果一个对象并没有逃逸出方法的话,就可能被优化成栈上分配。分配完成后,继续在调用栈内执行,最后线程结束,栈空间被回收,局部变量对象也被回收。这样就无需进行垃圾回收了。
常见栈上分配的场景:成员变量赋值、方法返回值、实例引用传递
代码优化之同步省略(消除)
线程同步的代价是相当高的,同步的后果是降低并发性和性能在动态编译同步块的时候,JIT 编译器可以借助逃逸分析来判断同步块所使用的锁对象是否能够被一个线程访问而没有被发布到其他线程。如果没有,那么 JIT编译器 在编译这个同步块的时候就会取消对这个代码的同步。这样就能大大提高并发性和性能。这个取消同步的过程就叫做同步省略,也叫锁消除。
public void keep() {
Object keeper = new Object();
synchronized(keeper) {
System.out.println(keeper);
}
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
如上代码,代码中对 keeper 这个对象进行加锁,但是 keeper 对象的生命周期只在 keep()方法中,并不会被其他线程所访问到,所以在 JIT编译阶段就会被优化掉。优化成:
public void keep() {
Object keeper = new Object();
System.out.println(keeper);
}
代码优化之标量替换
标量(Scalar) 是指一个无法再分解成更小的数据的数据。Java中的原始数据类型就是标量。
相对的,那些的还可以分解的数据叫做聚合量(Aggregate),Java中的对象就是聚合量,因为其还可以分解成其他聚合量和标量。
在 JIT 阶段,通过逃逸分析确定该对象不会被外部访问,并且对象可以被进一步分解时,JVM 不会创建该对象,而会将该对象成员变量分解若干个被这个方法使用的成员变量所代替。这些代替的成员变量在栈帧或寄存器上分配空间。这个过程就是标量替换。
通过-XX:+EliminateAllocations
可以开启标量替换,-XX:+PrintEliminateAllocations
查看标量替换情况。
public static void main(String[] args) {
alloc();
}
private static void alloc() {
Point point = new Point(1,2);
System.out.println("point.x="+point.x+"; point.y="+point.y);
}
class Point{
private int x;
private int y;
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
以上代码中,point 对象并没有逃逸出alloc()
方法,并且 point 对象是可以拆解成标量的。那么,JIT 就不会直接创建 Point 对象,而是直接使用两个标量int x
, int y
来替代 Point 对象。
private static void alloc() {
int x = 1;
int y = 2;
System.out.println("point.x="+x+"; point.y="+y);
}
------
著作权归@pdai所有
原文链接:https://pdai.tech/md/java/jvm/java-jvm-struct.html
代码优化之栈上分配
我们通过 JVM 内存分配可以知道 JAVA 中的对象都是在堆上进行分配,当对象没有被引用的时候,需要依靠 GC 进行回收内存,如果对象数量较多的时候,会给 GC 带来较大压力,也间接影响了应用的性能。为了减少临时对象在堆内分配的数量,JVM 通过逃逸分析确定该对象不会被外部访问。那就通过标量替换将该对象分解在栈上分配内存,这样该对象所占用的内存空间就可以随栈帧出栈而销毁,就减轻了垃圾回收的压力。
总结:
关于逃逸分析的论文在1999年就已经发表了,但直到JDK 1.6才有实现,而且这项技术到如今也并不是十分成熟的。
其根本原因就是无法保证逃逸分析的性能消耗一定能高于他的消耗。虽然经过逃逸分析可以做标量替换、栈上分配、和锁消除。但是逃逸分析自身也是需要进行一系列复杂的分析的,这其实也是一个相对耗时的过程。
一个极端的例子,就是经过逃逸分析之后,发现没有一个对象是不逃逸的。那这个逃逸分析的过程就白白浪费掉了。
虽然这项技术并不十分成熟,但是他也是即时编译器优化技术中一个十分重要的手段。
堆内存诊断
- jps工具, 查看当前系统中有哪些 java 进程
- jmap 工具, 查看堆内存占用情况
jmap - heap
进程id - jconsole 工具, 图形界面的,多功能的监测工具,可以连续监测, IDEA控制台输入jconsole就可以打开该工具
- jvisualvm 工具
jps
jhsdb jmap --heap --pid 进程号
方法区
方法区概述
- 方法区(Method Area)属于是 JVM 运行时数据区域的一块逻辑区域,方法区与 Java 堆一样,是所有线程共享的内存区域。
- 虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫Non-Heap(非堆),目的应该是与 Java 堆区分开。
- 方法区域类似于用于传统语言的编译代码的存储区域,或者类似于操作系统进程中的“文本”段。它存储每个类的结构,例如运行时常量池、字段和方法数据,以及方法和构造函数的代码,包括特殊方法,用于类和实例初始化以及接口初始化方法区域是在虚拟机启动时创建的。尽管方法区域在逻辑上是堆的一部分,但简单的实现可能不会选择垃圾收集或压缩它。此规范不强制指定方法区的位置或用于管理已编译代码的策略。
- 方法区的大小和堆空间一样, 方法区域可以具有固定的大小,或者可以根据计算的需要进行扩展,并且如果不需要更大的方法区域,则可以收缩。方法区的大小决定了系统可以放多少个类,如果系统类太多,导致方法区溢出,虚拟机同样会抛出内存溢出错误. 方法区域的内存不需要是连续的!
- 运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本/字段/方法/接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将类在加载后进入方法区的运行时常量池中存放。运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的是
String.intern()
方法。受方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。 - JVM 关闭后方法区即被释放
《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,方法区到底要如何实现那就是虚拟机自己要考虑的事情了。也就是说,在不同的虚拟机实现上,方法区的实现是不同的。
当虚拟机要使用一个类时,它需要读取并解析 Class文件 获取相关信息,再将信息存入到方法区。方法区会存储已被虚拟机加载的 类信息、字段信息、方法信息、常量、静态变量、即时编译器编译后的代码缓存等数据。
方法区和永久代以及元空间是什么关系呢? 方法区和永久代以及元空间的关系很像 Java中接口和类的关系,类实现了接口,这里的类就可以看作是永久代和元空间,接口可以看作是方法区,也就是说永久代以及元空间是 HotSpot虚拟机对虚拟机规范中方法区的两种实现方式。并且,永久代是 JDK 1.8 之前的方法区实现,JDK 1.8 及以后方法区的实现变成了元空间。
解惑
你是否也有看不同的参考资料,有的内存结构图有方法区,有的又是永久代,元数据区,一脸懵逼的时候?
- 方法区(method area) 只是 JVM 规范中定义的一个概念,用于存储类信息、常量池、静态变量、JIT编译后的代码等数据,并没有规定如何去实现它,不同的厂商有不同的实现。而永久代(PermGen) 是 Hotspot 虚拟机特有的概念, Java8 的时候又被元空间取代了,永久代和元空间都可以理解为方法区的落地实现。
- 永久代物理是堆的一部分,和新生代,老年代地址是连续的(受垃圾回收器管理),而元空间存在于本地内存(我们常说的堆外内存,不受垃圾回收器管理),这样就不受 JVM 限制了,也比较难发生OOM(都会有溢出异常)
- Java7 中我们通过
-XX:PermSize
和-xx:MaxPermSize
来设置永久代参数,Java8 之后,随着永久代的取消,这些参数也就随之失效了,改为通过-XX:MetaspaceSize
和-XX:MaxMetaspaceSize
用来设置元空间参数 - 存储内容不同,元空间存储类的元信息,静态变量和常量池等并入堆中。相当于永久代的数据被分到了堆和元空间中
- 如果方法区域中的内存不能用于满足分配请求,则 Java 虚拟机抛出 OutOfMemoryError
- JVM 规范说方法区在逻辑上是堆的一部分,但目前实际上是与 Java 堆分开的(Non-Heap)
所以对于方法区,Java8 之后的变化:
- 移除了永久代(PermGen),替换为元空间(Metaspace);
- 永久代中的 class metadata 转移到了 native memory(本地内存,而不是虚拟机);
- 永久代中的 interned Strings 和 class static variables 转移到了 Java heap;
- 永久代参数 (PermSize MaxPermSize) -> 元空间参数(MetaspaceSize MaxMetaspaceSize)
为什么要将永久代 (PermGen) 替换为元空间 (MetaSpace) 呢?
1、整个永久代有一个 JVM 本身设置的固定大小上限,无法进行调整,而元空间使用的是本地内存,受本机可用内存的限制,虽然元空间仍旧可能溢出,但是比原来出现的几率会更小。
当元空间溢出时会得到如下错误:java.lang.OutOfMemoryError: MetaSpace
你可以使用-XX:MaxMetaspaceSize
标志设置最大元空间大小,默认值为unlimited
, 这意味着它只受系统内存的限制。-XX:MetaspaceSize
调整标志定义元空间的初始大小如果未指定此标志,则 Metaspace 将根据运行时的应用程序需求动态地重新调整大小。
2、元空间里面存放的是类的元数据,这样加载多少类的元数据就不由MaxPermSize
控制了, 而由系统的实际可用空间来控制,这样能加载的类就更多了。
3、在 JDK8,合并HotSpot和JRockit的代码时, JRockit从来没有一个叫永久代的东西, 合并之后就没有必要额外的设置这么一个永久代的地方了。
方法区常用参数有哪些?
JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小。
-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen
相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就"永久存在"了。
JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是本地内存。下面是一些常用参数:
-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小
与永久代很大的不同就是,如果不指定大小的话,随着更多类的创建,虚拟机会耗尽所有可用的系统内存。
设置方法区内存的大小
JDK8 及以后:
- 元数据区大小可以使用参数
-XX:MetaspaceSize
和-XX:MaxMetaspaceSize
指定,替代上述原有的两个参数 - 默认值依赖于平台。Windows 下,
-XX:MetaspaceSize
是 21M,-XX:MaxMetaspacaSize
的值是 -1,即没有限制 - 与永久代不同,如果不指定大小,默认情况下,虚拟机会耗尽所有的可用系统内存。如果元数据发生溢出,虚拟机一样会抛出异常 OutOfMemoryError:Metaspace
-XX:MetaspaceSize
:设置初始的元空间大小。对于一个 64 位的服务器端 JVM 来说,其默认的-XX:MetaspaceSize
的值为20.75MB,这就是初始的高水位线,一旦触及这个水位线,Full GC 将会被触发并卸载没用的类(即这些类对应的类加载器不再存活),然后这个高水位线将会重置,新的高水位线的值取决于 GC 后释放了多少元空间。如果释放的空间不足,那么在不超过 MaxMetaspaceSize时,适当提高该值。如果释放空间过多,则适当降低该值- 如果初始化的高水位线设置过低,上述高水位线调整情况会发生很多次,通过垃圾回收的日志可观察到 Full GC 多次调用。为了避免频繁 GC,建议将
-XX:MetaspaceSize
设置为一个相对较高的值。
方法区内存溢出
- 1.8之前会导致永久代内存溢出, 使用
-XX:MaxPermSize=8m
指定永久代内存大小 - 1.8之后会导致元空间内存溢出, 使用
-XX:MaxMetaspaceSize=8m
指定元空间大小
/**
* 演示元空间内存溢出 java.lang.OutOfMemoryError: Metaspace
* -XX:MaxMetaspaceSize=8m
* @Version 1.0
* @Author:MenFanys
* @Date:2023/10/25 16:00
*/
import jdk.internal.org.objectweb.asm.ClassWriter;
import jdk.internal.org.objectweb.asm.Opcodes;
public class Demo1_8 extends ClassLoader { // 可以用来加载类的二进制字节码
public static void main(String[] args) {
int j = 0;
try {
Demo1_8 test = new Demo1_8();
for (int i = 0; i < 10000; i++, j++) {
// ClassWriter 作用是生成类的二进制字节码
ClassWriter cw = new ClassWriter(0);
// 版本号, public, 类名, 包名, 父类, 接口
cw.visit(Opcodes.V1_8, Opcodes.ACC_PUBLIC, "Class" + i, null, "java/lang/Object", null);
// 返回 byte[]
byte[] code = cw.toByteArray();
// 执行了类的加载
test.defineClass("Class" + i, code, 0, code.length); // Class 对象
}
} finally {
System.out.println(j);
}
}
}
方法区内部结构
方法区用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等。
类型信息
对每个加载的类型(类 class、接口 interface、枚举 enum、注解 annotation),JVM 必须在方法区中存储以下类型信息
- 这个类型的完整有效名称(全名=包名.类名)
- 这个类型直接父类的完整有效名(对于 interface或是 java.lang.Object,都没有父类)
- 这个类型的修饰符(public,abstract,final 的某个子集)
- 这个类型直接接口的一个有序列表
域(Field)信息
- JVM 必须在方法区中保存类型的所有域的相关信息以及域的声明顺序
- 域的相关信息包括:域名称、域类型、域修饰符(public、private、protected、static、final、volatile、transient 的某个子集)
方法(Method)信息
JVM 必须保存所有方法的
- 方法名称
- 方法的返回类型
- 方法参数的数量和类型
- 方法的修饰符(public,private,protected,static,final,synchronized,native,abstract 的一个子集)
- 方法的字符码(bytecodes)、操作数栈、局部变量表及大小(abstract 和 native 方法除外)
- 异常表(abstract 和 native 方法除外)
- 每个异常处理的开始位置、结束位置、代码处理在程序计数器中的偏移地址、被捕获的异常类的常量池索引
- 每个异常处理的开始位置、结束位置、代码处理在程序计数器中的偏移地址、被捕获的异常类的常量池索引
运行时常量池
运行时常量池(Runtime Constant Pool) 是方法区的一部分,理解运行时常量池的话,我们先来说说字节码文件(Class 文件)中的常量池(常量池表)
Class文件 中除了有类的版本、字段、方法、接口等描述信息外,还有用于存放编译期生成的各种 字面量(Literal) 和 符号引用(Symbolic Reference) 的 常量池表(Constant Pool Table) 。
字面量是源代码中的固定值的表示法,即通过字面我们就能知道其值的含义。字面量包括整数、浮点数和字符串字面量。常见的符号引用包括类符号引用、字段符号引用、方法符号引用、接口方法符号。
《深入理解 Java 虚拟机》7.34 节第三版对符号引用和直接引用的解释如下:
常量池表会在类加载后存放到方法区的运行时常量池中。
运行时常量池的功能类似于传统编程语言的符号表,尽管它包含了比典型符号表更广泛的数据。
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError错误。
常量池
一个有效的字节码文件中除了包含类的版本信息、字段、方法以及接口等描述信息外,还包含一项信息那就是常量池表(Constant Pool Table),包含各种字面量和对类型、域和方法的符号引用
为什么需要常量池?
一个 Java 源文件中的类、接口,编译后产生一个字节码文件。而 Java 中的字节码需要数据支持,通常这种数据会很大以至于不能直接存到字节码里,换另一种方式,可以存到常量池,这个字节码包含了指向常量池的引用。在动态链接的时候用到的就是运行时常量池。
如下,我们通过 jclasslib 查看一个只有 Main 方法的简单类,字节码中的#2
指向的就是Constant Pool
常量池可以看作是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量等类型
:::info
二进制字节码包含(类的基本信息,常量池,类方法定义,包含了虚拟机的指令)
首先看看常量池是什么,编译如下代码:
然后使用javap -v Test.class
命令反编译查看结果。-v
参数是用来显示详细信息
每条指令都会对应常量池表中一个地址,常量池表中的地址可能对应着一个类名、方法名、参数类型等信息。
- 常量池:就是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量信息
- 运行时常量池:常量池是
*.class
文件中的,当该类被加载以后,它的常量池信息就会放入运行时常量池,并把里面的符号地址变为真实地址.
:::
运行时常量池
- 在加载类和结构到虚拟机后,就会创建对应的运行时常量池
- 常量池表(Constant Pool Table) 是 Class 文件的一部分,用于存储编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中
- JVM 为每个已加载的类型(类或接口) 都维护一个常量池。池中的数据项像数组项一样,是通过索引访问的
- 运行时常量池中包含各种不同的常量,包括编译器就已经明确的数值字面量,也包括到运行期解析后才能够获得的方法或字段引用。此时不再是常量池中的符号地址了,这里换为真实地址
- 运行时常量池,相对于 Class 文件常量池的另一个重要特征是:动态性,Java 语言并不要求常量一定只有编译期间才能产生,运行期间也可以将新的常量放入池中,String 类的
intern()
方法就是这样的 - 当创建类或接口的运行时常量池时,如果构造运行时常量池所需的内存空间超过了方法区所能提供的最大值,则 JVM 会抛出 OutOfMemoryError异常。
方法区在JDK6、7、8中的演进细节
只有 HotSpot 才有永久代的概念
jdk1.6及之前 | 有永久代,静态变量存放在永久代上 |
---|---|
jdk1.7 | 有永久代,但已经逐步“去永久代”,字符串常量池、静态变量移除,保存在堆中 |
jdk1.8及之后 | 取消永久代,类型信息、字段、方法、常量保存在本地内存的元空间,但字符串常量池、静态变量仍在堆中 |
** HotSpot中字符串常量池保存哪里?永久代?方法区还是堆区**?
- 运行时常量池(Runtime Constant Pool)是虚拟机规范中是方法区的一部分,在加载类和结构到虚拟机后,就会创建对应的运行时常量池;而字符串常量池是这个过程中常量字符串的存放位置。所以从这个角度,字符串常量池属于虚拟机规范中的方法区,它是一个逻辑上的概念;而堆区,永久代以及元空间是实际的存放位置。
- 不同的虚拟机对虚拟机的规范(比如方法区)是不一样的,只有 HotSpot 才有永久代的概念。
- HotSpot也是发展的,由于一些问题的存在,HotSpot考虑逐渐去永久代,对于不同版本的JDK,实际的存储位置是有差异的,具体看如下表格:
| JDK版本 | 是否有永久代,字符串常量池放在哪里? | 方法区逻辑上规范,由哪些实际的部分实现的? |
| — | — | — |
| jdk1.6及之前 | 有永久代,运行时常量池(包括字符串常量池),静态变量存放在永久代上 | 这个时期方法区在HotSpot中是由永久代来实现的,以至于这个时期说方法区就是指永久代 |
| jdk1.7 | 有永久代,但已经逐步“去永久代”,字符串常量池、静态变量移除,保存在堆中; | 这个时期方法区在HotSpot中由永久代(类型信息、字段、方法、常量)和堆(字符串常量池、静态变量)共同实现 |
| jdk1.8及之后 | 取消永久代,类型信息、字段、方法、常量保存在本地内存的元空间,但字符串常量池、静态变量仍在堆中 | 这个时期方法区在HotSpot中由本地内存的元空间(类型信息、字段、方法、常量)和堆(字符串常量池、静态变量)共同实现 |
:::tips
移除永久代原因: http://openjdk.java.net/jeps/122
- 为永久代设置空间大小是很难确定的。
在某些场景下,如果动态加载类过多,容易产生 Perm 区的 OOM。如果某个实际 Web 工程中,因为功能点比较多,在运行过程中,要不断动态加载很多类,经常出现 OOM。而元空间和永久代最大的区别在于,元空间不在虚拟机中,而是使用本地内存,所以默认情况下,元空间的大小仅受本地内存限制
- 对永久代进行调优较困难
:::
方法区的垃圾回收
方法区的垃圾收集主要回收两部分内容:常量池中废弃的常量和不再使用的类型。
先来说说方法区内常量池之中主要存放的两大类常量:字面量和符号引用。字面量比较接近 Java 语言层次的常量概念,如文本字符串、被声明为 final 的常量值等。而符号引用则属于编译原理方面的概念,包括下面三类常量:
- 类和接口的全限定名
- 字段的名称和描述符
- 方法的名称和描述符
HotSpot 虚拟机对常量池的回收策略是很明确的,只要常量池中的常量没有被任何地方引用,就可以被回收
判定一个类型是否属于“不再被使用的类”,需要同时满足三个条件:
- 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类及其任何派生子类的实例
- 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如 OSGi、JSP 的重加载等,否则通常很难达成
- 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法
Java 虚拟机被允许堆满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,不使用了就必然会回收。是否对类进行回收,HotSpot 虚拟机提供了-Xnoclassgc
参数进行控制,还可以使用-verbose:class
以及-XX:+TraceClassLoading
、-XX:+TraceClassUnLoading
查看类加载和卸载信息。
在大量使用反射、动态代理、CGLib 等 ByteCode 框架、动态生成 JSP 以及 OSGi 这类频繁自定义 ClassLoader 的场景都需要虚拟机具备类卸载的功能,以保证永久代不会溢出
字符串常量池(StringTable)
StringTable叫做字符串常量池, 字符串常量池 是 JVM 为了提升性能和减少内存消耗针对字符串(String 类)专门开辟的一块区域,主要目的是为了避免字符串的重复创建。
// 在堆中创建字符串对象”ab“
// 将字符串对象”ab“的引用保存在字符串常量池中
String aa = "ab";
// 直接返回字符串常量池中字符串对象”ab“的引用
String bb = "ab";
System.out.println(aa==bb);// true
HotSpot 虚拟机中字符串常量池的实现是src/hotspot/share/classfile/stringTable.cpp
,StringTable
可以简单理解为一个固定大小的HashTable
,容量为 StringTableSize
(可以通过-XX:StringTableSize
参数来设置), 保存的是字符串(key) 和 字符串对象的引用(value) 的映射关系,字符串对象的引用指向堆中的字符串对象。
JDK1.7 之前,字符串常量池存放在永久代。JDK1.7 字符串常量池和静态变量从永久代移动了 Java 堆中。
- 常量池中的字符串仅是符号,只有在被用到时才会转化为对象
- 利用串池的机制,来避免重复创建字符串对象
- 字符串变量拼接的原理是StringBuilder.
- 字符串常量拼接的原理是编译器优化
:::tips
JDK 1.7 为什么要将字符串常量池移动到堆中?
主要是因为永久代(方法区实现) 的 GC回收效率太低,只有在整堆收集 (Full GC)的时候才会被执行GC。Java 程序中通常会有大量的被创建的字符串等待回收,将字符串常量池放到堆中,能够更高效及时地回收字符串内存。
相关问题:JVM 常量池中存储的是对象还是引用呢? - 知乎
最后再来分享一段周志明老师在GitHub - fenixsoft/jvm_book: 《深入理解Java虚拟机(第3版)》样例代码&勘误GitHub 仓库的issue#112中说过的话:运行时常量池、方法区、字符串常量池这些都是不随虚拟机实现而改变的逻辑概念,是公共且抽象的,Metaspace、Heap 是与具体某种虚拟机实现相关的物理概念,是私有且具体的。
:::
可以使用intern
方法,主动将 串池 中还没有的字符串对象放入串池中
-
JDK1.8 将这个字符串对象尝试放入串池, 如果有则并不会放入, 如果没有则放入串池, 会把串池中的对象返回
-
JDK1.6 将这个字符串对象尝试放入串池, 如果有则并不会放入, 如果没有会把此对象复制一份,放入串池, 会把串池中的对象返回
:::info
intern方法 JDK1.8
调用字符串对象的intern
方法,会将该字符串对象尝试放入到串池中 -
如果串池中没有该字符串对象,则放入成功
-
如果有该字符串对象,则放入失败
-
无论放入是否成功,都会返回串池中的字符串对象
:::
public class Main {
public static void main(String[] args) {
// "a" "b" 被放入串池中,str 则存在于堆内存之中
String str = new String("a") + new String("b");
// 调用str的intern方法,这时串池中没有"ab",则会将该字符串对象放入到串池中,此时堆内存与串池中的 "ab" 是同一个对象
String st2 = str.intern();
// 给 str3 赋值,因为此时串池中已有 "ab" ,则直接将串池中的内容返回
String str3 = "ab";
// 因为堆内存与串池中的 "ab" 是同一个对象,所以以下两条语句打印的都为 true
System.out.println(str == st2);// true
System.out.println(str == str3); // true
}
}
注意:此时如果调用intern
方法成功,堆内存与串池中的字符串对象是同一个对象;如果失败,则不是同一个对象
public class Main {
public static void main(String[] args) {
// 此处创建字符串对象 "ab" ,因为串池中还没有 "ab" ,所以将其放入串池中
String str3 = "ab";
// "a" "b" 被放入串池中,str 则存在于堆内存之中
String str = new String("a") + new String("b");
// 此时因为在创建 str3 时,"ab" 已存在与串池中,所以放入失败,但是会返回串池中的 "ab"
String str2 = str.intern();
// str在堆内存中
System.out.println(str == str2);// false
System.out.println(str == str3);// false
System.out.println(str2 == str3);// true
}
}
/**
* 演示字符串相关面试题
* @Version 1.0
* @Author:MenFanys
* @Date:2023/10/25 17:21
*/
public class Demo1_21 {
public static void main(String[] args) {
String s1 = "a";
String s2 = "b";
String s3 = "a" + "b"; // ab
String s4 = s1 + s2; // new String("ab")
String s5 = "ab";
String s6 = s4.intern();
// 问
System.out.println(s3 == s4); // false
System.out.println(s3 == s5); // true
System.out.println(s3 == s6); // true
String x2 = new String("c") + new String("d"); // new String("cd")
x2.intern();
String x1 = "cd";
// 问,如果调换了【最后两行代码】的位置呢,如果是jdk1.6呢, 1.6的话就是false
System.out.println(x1 == x2); // true
}
}
StringTable的位置
JDK1.6 StringTable位置是在永久代中,JDK1.8 StringTable位置是在堆中。
这样改的原因是永久代的垃圾回收效率比较低
StringTable垃圾回收
-Xmx10m
指定堆内存大小-XX:+PrintStringTableStatistics
打印字符串常量池信息-XX:+PrintGCDetails
-verbose:gc
打印 gc 的次数,耗费时间等信息
/**
* 演示 StringTable 垃圾回收
* -Xmx10m -XX:+PrintStringTableStatistics -XX:+PrintGCDetails -verbose:gc
* @Version 1.0
* @Author:MenFanys
* @Date:2023/10/25 20:00
*/
public class Demo1_7 {
public static void main(String[] args) throws InterruptedException {
int i = 0;
try {
for (int j = 0; j < 100000; j++) { // j=100, j=10000
String.valueOf(j).intern();
i++;
}
} catch (Throwable e) {
e.printStackTrace();
} finally {
System.out.println(i);
}
}
}
StringTable性能调优
因为StringTable是由HashTable实现的, 所以可以适当增加HashTable桶的个数, 来减少字符串放入串池所需要的时间
-XX:StringTableSize=桶个数(最少设置为 1009 以上)
考虑是否需要将字符串对象入池, 可以通过intern
方法减少重复入池
直接内存
直接内存(Direct Memory) 是一种特殊的内存缓冲区, 常用于NIO操作时,并不在 Java堆或方法区中分配的,而是通过 JNI 的方式在本地内存上分配的。
直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。
JDK1.4 中新加入的 NIO(Non-Blocking I/O,也被称为 New I/O),引入了一种基于通道(Channel)与缓存区(Buffer)的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。
直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。
类似的概念还有 堆外内存 。在一些文章中将直接内存等价于堆外内存,个人觉得不是特别准确。
堆外内存就是把内存对象分配在堆(新生代+老年代+永久代)以外的内存,这些内存直接受操作系统管理(而不是虚拟机),这样做的结果就是能够在一定程度上减少垃圾回收对应用程序造成的影响。
- 分配回收成本较高, 但读写性能高
- 不受JVM内存回收管理
:::tips
直接内存溢出案例:
:::
使用直接内存的好处
:::info
一般情况下的文件读写流程:
因为Java不能直接操作文件管理,需要从用户态切换到内核态,使用本地方法进行操作,然后读取磁盘文件,会在系统内存中创建一个缓冲区,将数据读到系统缓冲区, 然后在将系统缓冲区数据,复制到Java堆内存中, 然后再开始读写。
缺点是数据存储了两份,在系统内存中有一份,Java堆中有一份,造成了不必要的复制。
:::
使用了DirectBuffer的文件读取流程
直接内存是 操作系统和 Java代码都可以访问的一块区域,无需将代码从系统内存复制到 Java 堆内存,从而提高了效率。
直接内存回收原理
// 此部分代码对应本地文件 Demo1_26 和 Demo1_27
public class Code_06_DirectMemoryTest {
public static int _1GB = 1024 * 1024 * 1024;
public static void main(String[] args) throws IOException, NoSuchFieldException, IllegalAccessException {
// method();
method1();
}
// 演示 直接内存 是被 unsafe 创建与回收
private static void method1() throws IOException, NoSuchFieldException, IllegalAccessException {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
Unsafe unsafe = (Unsafe)field.get(Unsafe.class);
// 分配内存
long base = unsafe.allocateMemory(_1GB);
unsafe.setMemory(base,_1GB, (byte)0);
System.in.read();
// 释放内存
unsafe.freeMemory(base);
System.in.read();
}
// 演示 直接内存 被释放
private static void method() throws IOException {
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(_1GB);
System.out.println("分配完毕");
System.in.read();
System.out.println("开始释放");
byteBuffer = null;
System.gc(); // 手动 gc
System.in.read();
}
}
直接内存的回收不是通过 JVM 的垃圾回收来释放的,而是通过unsafe.freeMemory
来手动释放。
第一步:allocateDirect 的实现, 访问allocateDirect
方法的源码, 底层是创建了一个 DirectByteBuffer对象。
第二步:DirectByteBuffer类,
这里调用了一个 Cleaner 的create
方法,且后台线程还会对虚引用的对象监测,如果虚引用的实际对象(这里是 DirectByteBuffer)被回收以后,就会调用 Cleaner 的clean
方法,来清除直接内存中占用的内存。
可以看到关键的一行代码, this.thunk.run()
,thunk 是 Runnable 对象。run
方法就是回调 Deallocator 中的run
方法,
public void run() {
if (address == 0) {
// Paranoia
return;
}
// 释放内存
unsafe.freeMemory(address);
address = 0;
Bits.unreserveMemory(size, capacity);
}
直接内存的回收机制总结
使用了 **Unsafe对象 **完成直接内存的分配回收,并且回收需要主动调用 freeMemory 方法
:::tips
ByteBuffer 的实现类内部,使用了 Cleaner(虚引用) 来监测 ByteBuffer对象,一旦ByteBuffer对象被垃圾回收,那么就会由 ReferenceHandler线程 通过 Cleaner的clean
方法调用freeMemory来释放直接内存
:::
/**
* -XX:+DisableExplicitGC 显示的
*/
private static void method() throws IOException {
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(_1GB);
System.out.println("分配完毕");
System.in.read();
System.out.println("开始释放");
byteBuffer = null;
System.gc(); // 手动 gc 失效
System.in.read();
}
一般用 jvm 调优时,会加上下面的参数:
-XX:+DisableExplicitGC // 静止显示的 GC
意思就是禁止我们手动的 GC,比如手动System.gc()
无效,它是一种 full gc,会回收新生代、老年代,会造成程序执行的时间比较长。所以我们就通过 unsafe 对象调用 freeMemory 的方式释放内存。
HotSpot虚拟机对象探秘
对象的创建
Java 对象的创建过程我建议最好是能默写出来,并且要掌握每一步在做什么。
Step1:类加载检查
虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
Step2:分配内存
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择哪种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。
内存分配的两种方式 (补充内容,需要掌握):
- 指针碰撞:
- 适用场合:堆内存规整(即没有内存碎片)的情况下。
- 原理:用过的内存全部整合到一边,没有用过的内存放在另一边,中间有一个分界指针,只需要向着没用过的内存方向将该指针移动对象内存大小位置即可。
- 使用该分配方式的 GC 收集器:Serial, ParNew
- 空闲列表:
- 适用场合:堆内存不规整的情况下。
- 原理:虚拟机会维护一个列表,该列表中会记录哪些内存块是可用的,在分配的时候,找一块儿足够大的内存块儿来划分给对象实例,最后更新列表记录。
- 使用该分配方式的 GC 收集器:CMS
选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的。
内存分配并发问题(补充内容,需要掌握)
在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:
- CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
- TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配
Step3:初始化零值
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
Step4:设置对象头
初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
Step5:执行 init 方法
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始, 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
对象的内存布局
在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头、实例数据和对齐填充。
Hotspot 虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。
实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。
对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
对象的访问定位
建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有:使用句柄、直接指针。
句柄
如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与对象类型数据各自的具体地址信息。
直接指针
如果使用直接指针访问,reference 中存储的直接就是对象的地址。
这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。
HotSpot 虚拟机主要使用的就是这种方式来进行对象访问。
参考
【精选】JVM 学习笔记(一)内存结构_codeali csdn jvm内存结构-优快云博客
黑马程序员JVM完整教程,Java虚拟机快速入门,全程干货不拖沓_哔哩哔哩_bilibili
Java内存区域详解(重点)
JVM 基础 - JVM 内存结构