What is the copy-and-swap idiom?

本文深入探讨了C++中资源管理的关键概念,特别是复制赋值运算符和交换技巧(Copy-and-Swap idiom)。通过详细解释为何需要这些特性,以及它们如何在实践中解决资源管理中的常见问题,如避免代码重复、提供强异常保证和优化性能。此外,文章还介绍了C++11中对资源管理规则的更新,包括移动构造函数的引入,并提供了实际代码示例来展示如何实现这些概念。

Overview

Why do we need it?

Any class that manages a resource (a wrapper, like a smart pointer) needs to implement The Big Three. While the goals and implementation of the copy-constructor and destructor are straightforward, the copy-assignment operator is arguably the most nuanced and difficult. How should it be done? What pitfalls need to be avoided?

The copy-and-swap idiom is the solution, and elegantly assists the assignment operator in achieving two things: avoiding code duplication, and providing a strong exception guarantee.

How does it work?

Conceptually, it works by using the copy-constructor's functionality to create a local copy of the data, then takes the copied data with a swap function, swapping the old data with the new data. The temporary copy then destructs, taking the old data with it. We are left with a copy of the new data.

In order to use the copy-and-swap idiom, we need three things: a working copy-constructor, a working destructor (both are the basis of any wrapper, so should be complete anyway), and a swap function.

A swap function is a non-throwing function that swaps two objects of a class, member for member. We might be tempted to use std::swap instead of providing our own, but this would be impossible; std::swap uses the copy-constructor and copy-assignment operator within its implementation, and we'd ultimately be trying to define the assignment operator in terms of itself!

(Not only that, but unqualified calls to swap will use our custom swap operator, skipping over the unnecessary construction and destruction of our class that std::swap would entail.)


An in-depth explanation

The goal

Let's consider a concrete case. We want to manage, in an otherwise useless class, a dynamic array. We start with a working constructor, copy-constructor, and destructor:

#include <algorithm> // std::copy
#include <cstddef> // std::size_t

class dumb_array
{
public:
    // (default) constructor
    dumb_array(std::size_t size = 0)
        : mSize(size),
          mArray(mSize ? new int[mSize]() : 0)
    {
    }

    // copy-constructor
    dumb_array(const dumb_array& other) 
        : mSize(other.mSize),
          mArray(mSize ? new int[mSize] : 0),
    {
        // note that this is non-throwing, because of the data
        // types being used; more attention to detail with regards
        // to exceptions must be given in a more general case, however
        std::copy(other.mArray, other.mArray + mSize, mArray);
    }

    // destructor
    ~dumb_array()
    {
        delete [] mArray;
    }

private:
    std::size_t mSize;
    int* mArray;
};

This class almost manages the array successfully, but it needs operator= to work correctly.

A failed solution

Here's how a naive implementation might look:

// the hard part
dumb_array& operator=(const dumb_array& other)
{
    if (this != &other) // (1)
    {
        // get rid of the old data...
        delete [] mArray; // (2)
        mArray = 0; // (2) *(see footnote for rationale)

        // ...and put in the new
        mSize = other.mSize; // (3)
        mArray = mSize ? new int[mSize] : 0; // (3)
        std::copy(other.mArray, other.mArray + mSize, mArray); // (3)
    }

    return *this;
} 

And we say we're finished; this now manages an array, without leaks. However, it suffers from three problems, marked sequentially in the code as (n).

The first is the self-assignment test. This check serves two purposes: it's an easy way to prevent us from running needless code on self-assignment, and it protects us from subtle bugs (such as deleting the array only to try and copy it). But in all other cases it merely serves to slow the program down, and act as noise in the code; self-assignment rarely occurs, so most of the time this check is a waste. It would be better if the operator could work properly without it.

The second is that it only provides a basic exception guarantee. If new int[mSize] fails, *this will have been modified. (Namely, the size is wrong and the data is gone!) For a strong exception guarantee, it would need to be something akin to:

dumb_array& operator=(const dumb_array& other)
{
    if (this != &other) // (1)
    {
        // get the new data ready before we replace the old
        std::size_t newSize = other.mSize;
        int* newArray = newSize ? new int[newSize]() : 0; // (3)
        std::copy(other.mArray, other.mArray + newSize, newArray); // (3)

        // replace the old data (all are non-throwing)
        delete [] mArray;
        mSize = newSize;
        mArray = newArray;
    }

    return *this;
} 

The code has expanded! Which leads us to the third problem: code duplication. Our assignment operator effectively duplicates all the code we've already written elsewhere, and that's a terrible thing.

In our case, the core of it is only two lines (the allocation and the copy), but with more complex resources this code bloat can be quite a hassle. We should strive to never repeat ourselves.

(One might wonder: if this much code is needed to manage one resource correctly, what if my class manages more than one? While this may seem to be a valid concern, and indeed it requires non-trivial try/catch clauses, this is a non-issue. That's because a class should manage one resource only!)

A successful solution

As mentioned, the copy-and-swap idiom will fix all these issues. But right now, we have all the requirements except one: a swap function. While The Rule of Three successfully entails the existence of our copy-constructor, assignment operator, and destructor, it should really be called "The Big Three and A Half": any time your class manages a resource it also makes sense to provide a swap function.

We need to add swap functionality to our class, and we do that as follows†:

class dumb_array
{
public:
    // ...

    friend void swap(dumb_array& first, dumb_array& second) // nothrow
    {
        // enable ADL (not necessary in our case, but good practice)
        using std::swap; 

        // by swapping the members of two classes,
        // the two classes are effectively swapped
        swap(first.mSize, second.mSize); 
        swap(first.mArray, second.mArray);
    }

    // ...
};

Now not only can we swap our dumb_array's, but swaps in general can be more efficient; it merely swaps pointers and sizes, rather than allocating and copying entire arrays. Aside from this bonus in functionality and efficiency, we are now ready to implement the copy-and-swap idiom.

Without further ado, our assignment operator is:

dumb_array& operator=(dumb_array other) // (1)
{
    swap(*this, other); // (2)

    return *this;
} 

And that's it! With one fell swoop, all three problems are elegantly tackled at once.

Why does it work?

We first notice an important choice: the parameter argument is taken by-value. While one could just as easily do the following (and indeed, many naive implementations of the idiom do):

dumb_array& operator=(const dumb_array& other)
{
    dumb_array temp(other);
    swap(*this, temp);

    return *this;
}

We lose an important optimization opportunity. Not only that, but this choice is critical in C++11, which is discussed later. (On a general note, a remarkably useful guideline is as follows: if you're going to make a copy of something in a function, let the compiler do it in the parameter list.‡)

Either way, this method of obtaining our resource is the key to eliminating code duplication: we get to use the code from the copy-constructor to make the copy, and never need to repeat any bit of it. Now that the copy is made, we are ready to swap.

Observe that upon entering the function that all the new data is already allocated, copied, and ready to be used. This is what gives us a strong exception guarantee for free: we won't even enter the function if construction of the copy fails, and it's therefore not possible to alter the state of *this. (What we did manually before for a strong exception guarantee, the compiler is doing for us now; how kind.)

At this point we are home-free, because swap is non-throwing. We swap our current data with the copied data, safely altering our state, and the old data gets put into the temporary. The old data is then released when the function returns. (Where upon the parameter's scope ends and its destructor is called.)

Because the idiom repeats no code, we cannot introduce bugs within the operator. Note that this means we are rid of the need for a self-assignment check, allowing a single uniform implementation of operator=. (Additionally, we no longer have a performance penalty on non-self-assignments.)

And that is the copy-and-swap idiom.

What about C++11?

The next version of C++, C++11, makes one very important change to how we manage resources: the Rule of Three is now The Rule of Four (and a half). Why? Because not only do we need to be able to copy-construct our resource, we need to move-construct it as well.

Luckily for us, this is easy:

class dumb_array
{
public:
    // ...

    // move constructor
    dumb_array(dumb_array&& other)
        : dumb_array() // initialize via default constructor, C++11 only
    {
        swap(*this, other);
    }

    // ...
};

What's going on here? Recall the goal of move-construction: to take the resources from another instance of the class, leaving it in a state guaranteed to be assignable and destructible.

So what we've done is simple: initialize via the default constructor (a C++11 feature), then swap with other; we know a default constructed instance of our class can safely be assigned and destructed, so we know other will be able to do the same, after swapping.

(Note that some compilers do not support constructor delegation; in this case, we have to manually default construct the class. This is an unfortunate but luckily trivial task.)

Why does that work?

That is the only change we need to make to our class, so why does it work? Remember the ever-important decision we made to make the parameter a value and not a reference:

dumb_array& operator=(dumb_array other); // (1)

Now, if other is being initialized with an rvalue, it will be move-constructed. Perfect. In the same way C++03 let us re-use our copy-constructor functionality by taking the argument by-value, C++11 will automatically pick the move-constructor when appropriate as well. (And, of course, as mentioned in previously linked article, the copying/moving of the value may simply be elided altogether.)

And so concludes the copy-and-swap idiom.


Footnotes

*Why do we set mArray to null? Because if any further code in the operator throws, the destructor of dumb_array might be called; and if that happens without setting it to null, we attempt to delete memory that's already been deleted! We avoid this by setting it to null, as deleting null is a no-operation.

†There are other claims that we should specialize std::swap for our type, provide an in-class swap along-side a free-function swap, etc. But this is all unnecessary: any proper use of swap will be through an unqualified call, and our function will be found through ADL. One function will do.

‡The reason is simple: once you have the resource to yourself, you may swap and/or move it (C++11) anywhere it needs to be. And by making the copy in the parameter list, you maximize optimization.

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值