编辑距离

本文探讨了编辑距离问题,这是一种衡量两个字符串相似度的方法,常用于DNA序列比对、拼写检查等领域。通过动态规划(DP)解决,以下是具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求两个字符串的编辑距离,经典dp题

 

代码如下:

def Levenshtein_Distance(str1, str2):
    """
    计算字符串 str1 和 str2 的编辑距离
    :param str1
    :param str2
    :return:
    """
    matrix = [[ i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
    for i in range(1, len(str1)+1):
        for j in range(1, len(str2)+1):
            if(str1[i-1] == str2[j-1]):
                d = 0
            else:
                d = 1
            
            matrix[i][j] = min(matrix[i-1][j]+1, matrix[i][j-1]+1, matrix[i-1][j-1]+d)
    return matrix[len(str1)][len(str2)]
print(Levenshtein_Distance("abc", "bd"))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值