课堂代码:
import numpy as np
import matplotlib.pyplot as plt
def forward(x):
return x*w
def loss(x,y):
y_pred=forward(x);
return (y-y_pred)**2
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w_list=[]
mse_list=[]
for w in np.arange(0.0,4.1,0.1):
l_sum=0
for x_val,y_val in zip(x_data,y_data):
loss_val=loss(x_val,y_val)
l_sum+=loss_val
mse_list.append(l_sum/3)
w_list.append(w)
plt.plot(w_list,mse_list)
plt.ylabel('loss')
plt.xlabel('w')
plt.show()
课后作业代码:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x_data=[1.0,2.0,3.0]
y_data=[5.0,8.0,11.0]
def forward(x):
return w*x+b
def loss(x,y):
y_pred=forward(x)
return (y-y_pred)**2
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
w,b=np.meshgrid(W,B)
l_sum=0
for x_val,y_val in zip(x_data,y_data):
loss_val=loss(x_val,y_val)
l_sum+=loss_val
fig=plt.figure() #创建画板
ax=Axes3D(fig)
ax.plot_surface(w,b,l_sum/3)
plt.show()
博客包含课堂代码和课后作业代码,涉及Python、Matplotlib和机器学习相关内容,聚焦信息技术领域的代码实践。
240

被折叠的 条评论
为什么被折叠?



