Drazil is playing a math game with Varda.
Let's define for positive integer x as a product of factorials of its digits. For example,
.
First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:
1. x doesn't contain neither digit 0 nor digit 1.
2. =
.
Help friends find such number.
The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.
The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
4 1234
33222
3 555
555
In the first case,
题目大意:
我们定义F(x)为x的每一位数的阶乘的乘积,比如 。
现在题目给你一个x,要你求出a,a满足:
1.a的任何一位都不包括0和1 。
2.F(x) = F(a) 。
3.a必须是满足以上两个条件的最大的数。
大致思路:
一开始以为这道C又是不可做题(对我来说……),特别是看到要求a的最大值,因为又没限制范围,所以更加觉得做不出来,奈何前两题太容易,剩下的时间太多,索性也就想想,然后就突然想到既然是求最大的数,说明这个数不可能遍历,其实这也算一个提示,说明这道题有特殊的方法求解,然后就发现要使a最大,就要把x的每一位能拆成多位的就拆出来,这样数就变大了。
这道题其实也很简单,然后总结出下面各个数字的拆分(只有素数拆分不了):
0, 1 -> empty
2 -> 2
3 -> 3
4 -> 322
5 -> 5
6 -> 53
7 -> 7
8 -> 7222
9 -> 7332
举个例子,9! == 7! * 3!* 3!* 2!,所以这道题就出来了…
下面放出代码:
//CF_292_C.cpp
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
typedef long long ll;
using namespace std;
const int maxn = 15 + 10;
const int maxm = 20000 + 10;
int n, kry[maxn], stal[maxm];
int fx[maxn][maxm] = {{0}, {0}, {2}, {3}, {3, 2, 2}, {5},
{5, 3}, {7}, {7, 2, 2, 2},
{7, 3, 3, 2}, };
int main(void)
{
cin>>n;
for( int i=0; i<n; i++ )
scanf("%1d", &kry[i]);
int k = 0;
for( int i=0; i<n; i++ )
{
if( kry[i]==1||kry[i]==0 )
continue;
for( int j=0; fx[kry[i]][j]!='\0'; j++ )
{
stal[k] = fx[kry[i]][j];
k++;
}
}
stal[k] = '\0';
sort(stal, stal+k, greater<int>());
for( int i=0; i<k; i++ )
printf("%d", stal[i]);
cout<<endl;
return 0;
}