Differences between System V and Posix semaphores

  • One marked difference between the System V and POSIX semaphore implementations is that in System V you can control how much the semaphore count can be increased or decreased; whereas in POSIX, the semaphore count is increased and decreased by 1.
  • POSIX semaphores do not allow manipulation of semaphore permissions, whereas System V semaphores allow you to change the permissions of semaphores to a subset of the original permission.
  • Initialization and creation of semaphores is atomic (from the user's perspective) in POSIX semaphores.
  • From a usage perspective, System V semaphores are clumsy, while POSIX semaphores are straight-forward
  • The scalability of POSIX semaphores (using unnamed semaphores) is much higher than System V semaphores. In a user/client scenario, where each user creates her own instances of a server, it would be better to use POSIX semaphores.
  • System V semaphores, when creating a semaphore object, creates an array of semaphores whereas POSIX semaphores create just one. Because of this feature, semaphore creation (memory footprint-wise) is costlier in System V semaphores when compared to POSIX semaphores.
  • It has been said that POSIX semaphore performance is better than System V-based semaphores.
  • POSIX semaphores provide a mechanism for process-wide semaphores rather than system-wide semaphores. So, if a developer forgets to close the semaphore, on process exit the semaphore is cleaned up. In simple terms, POSIX semaphores provide a mechanism for non-persistent semaphores.



此贴转自http://stackoverflow.com/questions/368322/differences-between-system-v-and-posix-semaphores

基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电网调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电网中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电网多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能电网优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电网调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值