function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
predictions = 1./(1.+exp(-X*theta));
J = (-y'*log(predictions)-(1.-y')*log(1.-predictions))/m;
grad = (X'*(predictions - y))./m
% =============================================================
end
吴恩达的机器学习编程作业4:costFunction计算逻辑回归的代价函数
最新推荐文章于 2022-10-03 20:50:20 发布
本文介绍了一个用于逻辑回归的成本函数实现方法,详细解释了如何计算给定参数theta下的成本值及梯度,以便进行参数优化。
1172

被折叠的 条评论
为什么被折叠?



