安装条件:
- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).
安装流程(以Mac为例,在终端中输入下述命令):
pip install -U scikit-learn
安装完成后,可以测试Scikit Learn库。如下示例代码:
"""
====================================
Plotting Cross-Validated Predictions
====================================
This example shows how to use `cross_val_predict` to visualize prediction
errors.
"""
#-*- coding: utf-8 -*-
from sklearn import datasets
from sklearn.model_selection import cross_val_predict
from sklearn import linear_model
import matplotlib.pyplot as plt
lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target
# cross_val_predict returns an array of the same size as `y` where each entry
# is a prediction obtained by cross validation:
predicted = cross_val_predict(lr, boston.data, y, cv=10)
fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
运行,然后结果如下: