预训练语言模型mask函数DataCollatorForLanguageModeling和DataCollatorForWholeWordMask解析

预训练语言模型中的非常重要的任务是MLM任务,MLM任务需要对原始文本进行mask。
transformers库已经集成了预训练语言模型中的mask机制,这里分析其中的两个函数DataCollatorForLanguageModelingDataCollatorForWholeWordMask

1.1DataCollatorForLanguageModeling

这个类实现了Bert模型中的MLM任务中提出的mask机制。下面我对照transformers库中的原始代码讲解。

class DataCollatorForLanguageModeling:
    """
    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
    are not all of the same length.

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        mlm (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the
            inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for
            non-masked tokens and the value to predict for the masked token.
        mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
            The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`.
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.

    .. note::

        For best performance, this data collator should be used with a dataset having items that are dictionaries or
        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
        argument :obj:`return_special_tokens_mask=True`.
    """

    tokenizer: PreTrainedTokenizerBase
    mlm: bool = True
    mlm_probability: float = 0.15
    pad_to_multiple_of: Optional[int] = None

    def __post_init__(self):
        if self.mlm and self.tokenizer.mask_token is None:
            raise ValueError(
                "This tokenizer does not have a mask token which is necessary for masked language modeling. "
                "You should pass `mlm=False` to train on causal language modeling instead."
            )

    def __call__(
        self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]]
    ) -> Dict[str, torch.Tensor]:
        # Handle dict or lists with proper padding and conversion to tensor.
        if isinstance(examples[0], (dict, BatchEncoding)):
            batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of)
        else:
            batch = {
   "input_ids": _collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)}

        # If special token mask has been preprocessed, pop it from the dict.
        special_tokens_mask = batch.pop("special_tokens_mask", None)
        if self.mlm:
            batch["input_ids"], batch["labels"] = self.mask_tokens(
                batch["input_ids"], special_tokens_mask=special_tokens_mask
            )
        else:
            labels = batch["input_ids"].clone()
            if self.tokenizer.pad_token_id is not None:
                labels[labels == self.tokenizer.pad_token_id] = -100
            batch["labels"] = labels
        return batch

    def mask_tokens(
        self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        '''
        inputs必须为tensor类型,
        '''
        
        # 这里的labels指的是哪些字要被mask
        labels = inputs.clone()   
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        # 生成一个全为0.15 的矩阵,维度和inputs的大小一样。
        probability_matrix = torch.full(labels.shape, self.mlm_probability)
        # 这里的spcial_tokens指的是cls,sep,pad等,special_tokens_mask的维度和inputs一样,
        # 特殊token的位置是true,其他位置是false
        if special_tokens_mask is None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值