Browse SBI branches and their IFSC Codes of Srikakulam

本文提供了印度Srikakulam地区State Bank of India (SBI)各分行的详细信息,包括IFSC代码、MICR代码及客户服务电话号码等关键数据。
Top Branches of State Bank of India in Srikakulam.

Palakonda
SBI Palakonda ifsc code is SBIN0000766 as reported by RBI. SBI Palakonda micr code is 53200202 as per RBI. SBI Palakonda, srikakulam, andhra pradesh customer care phone number is IP:902438,8941-220124,220153.

Srikakulam
SBI Srikakulam ifsc code is SBIN0000919 as reported by RBI. SBI Srikakulam micr code is 532002004 as per RBI. SBI Srikakulam, srikakulam, andhra pradesh customer care phone number is IP: 902536.

Sompeta
SBI Sompeta ifsc code is SBIN0000964 as reported by RBI. SBI Sompeta micr code is 532002001 as per RBI. SBI Sompeta, srikakulam, andhra pradesh customer care phone number is IP:902651.

Tekkali
SBI Tekkali ifsc code is SBIN0000966 as reported by RBI. SBI Tekkali micr code is 532002005 as per RBI. SBI Tekkali, srikakulam, andhra pradesh customer care phone number is IP 990110, 08945-244436,245936.

Ichapuram
SBI Ichapuram ifsc code is SBIN0000983 as reported by RBI. SBI Ichapuram micr code is 532002312 as per RBI. SBI Ichapuram, srikakulam, andhra pradesh customer care phone number is IP 990237, 08947-232640 and check here for SBI Branch details of Chennai Branches with all details click here to know more.

Palasa
SBI Palasa ifsc code is SBIN0001006 as reported by RBI. SBI Palasa micr code is 532002007 as per RBI. SBI Palasa, srikakulam, andhra pradesh customer care phone number is IP 902653, 08945-241914, 241759.

Amadalavalasa
SBI Amadalavalasa ifsc code is SBIN0001012 as reported by RBI. SBI Amadalavalasa micr code is 532002008 as per RBI. SBI Amadalavalasa, srikakulam, andhra pradesh customer care phone number is IP:902473, 08942-286249, 286349.

Pathapatnam
SBI Pathapatnam ifsc code is SBIN0001441 as reported by RBI. SBI Pathapatnam micr code is 532002009 as per RBI. SBI Pathapatnam, srikakulam, andhra pradesh customer care phone number is IP-990141, 08946-256132, 255132 meanwhile find more details of State Bank of India New-Delhi Branches visit this page.

Adb Srikakulam
SBI Adb Srikakulam ifsc code is SBIN0001586 as reported by RBI. SBI Adb Srikakulam micr code is 532002002 as per RBI. SBI Adb Srikakulam, srikakulam, andhra pradesh customer care phone number is 902541.

Talagam
SBI Talagam ifsc code is SBIN0001944 as reported by RBI. SBI Talagam micr code is 532002011 as per RBI. SBI Talagam, srikakulam, andhra pradesh customer care phone number is IP:902403,08945-245111244442.

Baruva
SBI Baruva ifsc code is SBIN0002695 as reported by RBI. SBI Baruva micr code is 532002012 as per RBI. SBI Baruva, srikakulam, andhra pradesh customer care phone number is 8947-235125 FAX NO : 08947-235090.

Gara
SBI Gara ifsc code is SBIN0002719 as reported by RBI. SBI Gara micr code is 532002013 as per RBI. SBI Gara, srikakulam, andhra pradesh customer care phone number is TEL:08942-233128.

Hiramandalam
SBI Hiramandalam ifsc code is SBIN0002726 as reported by RBI. SBI Hiramandalam micr code is 532002014 as per RBI. SBI Hiramandalam, srikakulam, andhra pradesh customer care phone number is 8946- 253891, 253326.

Kaviti
SBI Kaviti ifsc code is SBIN0002742 as reported by RBI. SBI Kaviti micr code is 532002015 as per RBI. SBI Kaviti, srikakulam, andhra pradesh customer care phone number is 08947-236121236165.

Kotabommali
SBI Kotabommali ifsc code is SBIN0002749 as reported by RBI. SBI Kotabommali micr code is 532002016 as per RBI. SBI Kotabommali, srikakulam, andhra pradesh customer care phone number is IP:990291, 08942-238011, 238544.

Naupada
SBI Naupada ifsc code is SBIN0002767 as reported by RBI. SBI Naupada micr code is 532002017 as per RBI. SBI Naupada, srikakulam, andhra pradesh customer care phone number is 08945-249744, 249697.

Ponduru
SBI Ponduru ifsc code is SBIN0002785 as reported by RBI. SBI Ponduru micr code is 532002018 as per RBI. SBI Ponduru, srikakulam, andhra pradesh customer care phone number is 08941-242423.

Veeragattam
SBI Veeragattam ifsc code is SBIN0002805 as reported by RBI. SBI Veeragattam micr code is 532002019 as per RBI. SBI Veeragattam, srikakulam, andhra pradesh customer care phone number is 08941-239730.

Mandasa
SBI Mandasa ifsc code is SBIN0003121 as reported by RBI. SBI Mandasa micr code is 532002020 as per RBI. SBI Mandasa, srikakulam, andhra pradesh customer care phone number is 08947-237239, 237604, 237609.

Rajam
SBI Rajam ifsc code is SBIN0006216 as reported by RBI. SBI Rajam micr code is 532002021 as per RBI. SBI Rajam, srikakulam, andhra pradesh customer care phone number is 08941 211310/251433 IP 902655.

Kotturu
SBI Kotturu ifsc code is SBIN0006636 as reported by RBI. SBI Kotturu micr code is 532002022 as per RBI. SBI Kotturu, srikakulam, andhra pradesh customer care phone number is 08946-258442, 258119.

Bitiwada
SBI Bitiwada ifsc code is SBIN0008487 as reported by RBI. SBI Bitiwada micr code is 532002023 as per RBI. SBI Bitiwada, srikakulam, andhra pradesh customer care phone number is 8941-234529.

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值