扑克数据集
数据集地址:https://download.youkuaiyun.com/download/matt45m/89130302
这是一个检测扑克牌种类的数据集,检测种类目前只有6种,分别是
"queen", "ten", "nine", "king", "jack", "ace"
数据集共含有363张图片,标注的工具是labelimg,数据标签是xml,格式如下:
<annotation>
<folder>train</folder>
<filename>cam_image37.jpg</filename>
<path>C:\tensorflow_cards\train\cam_image37.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>960</width>
<height>540</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ace</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>293</xmin>
<ymin>41</ymin>
<xmax>448</xmax>
<ymax>247</ymax>
</bndbox>
</object>
<object>
<name>ace</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>481</xmin>
<ymin>276</ymin>
<xmax>654</xmax>
<ymax>518</ymax>
</bndbox>
</object>
<object>
<name>king</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>488</xmin>
<ymin>32</ymin>
<xmax>653</xmax>
<ymax>246</ymax>
</bndbox>
</object>
<object>
<name>king</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>279</xmin>
<ymin>280</ymin>
<xmax>442</xmax>
<ymax>518</ymax>
</bndbox>
</object>
</annotation>
数据可视化:
from xml.dom.minidom import parse
import xml.dom.minidom
def acquire_label_xml(img_path):
DOMTree = xml.dom.minidom.parse(img_path)
collection = DOMTree.documentElement
boundingbox = collection.getElementsByTagName("object")
img_lable = []
for i in boundingbox:
tmp = []
category = i.getElementsByTagName("name")[0].childNodes[0].data
tmp.append(float(
[j.childNodes[0].data for j in i.getElementsByTagName("bndbox")[0].getElementsByTagName("xmin")][
0]))
tmp.append(float(
[j.childNodes[0].data for j in i.getElementsByTagName("bndbox")[0].getElementsByTagName("ymin")][
0]))
tmp.append(float(
[j.childNodes[0].data for j in i.getElementsByTagName("bndbox")[0].getElementsByTagName("xmax")][
0]))
tmp.append(float(
[j.childNodes[0].data for j in i.getElementsByTagName("bndbox")[0].getElementsByTagName("ymax")][
0]))
tmp.append(category)
img_lable.append(tmp)
return img_lable