Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.

Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
思路:很具代表性的一道图的遍历的题目,用DFS和邻接链表的数据结构,基本没有什么坑点,但是题目要读仔细,特别是加粗的那几个字
AC参考代码:
#include <iostream>
#include <vector>
#include <fstream>
#include <algorithm>
using namespace std;
int N,M,S;
vector<int> node;
vector<vector<int> > edge(101);//edge中储存的是索引 索引再根据node找到对应的值
vector<vector<int> >result;//把符合条件的路径节点作为vector数组储存起来
vector<int> isVisited(101);//标记节点是否被遍历
vector<int> currentNode;//储存当前路径上的节点
int sum = 0;//路径权重和
int compare(vector<int> a,vector<int> b){//按照字典逆序排序
int minN = a.size()<b.size()?a.size():b.size();
for(int i=0;i<minN;i++){
if(a[i]!=b[i]){
return a[i]>b[i];
}
}
return 0;
}
void DFS(int i){ //遍历并寻找满足条件的路径并记录节点
isVisited[i] = 1;
currentNode.push_back(node[i]);
sum += node[i];
if(edge[i].size()==0){//到达叶子节点
if(sum==S){ //这条路径符合要求
result.push_back(currentNode);
}
}else{
for(int j=0;j<edge[i].size();j++){
DFS(edge[i][j]);
}
}
sum -= node[i]; //遍历完叶子节点后返回需要修改当前路径节点和节点和
currentNode.pop_back();
}
int main()
{
//ifstream cin("1.txt");
cin>>N>>M>>S;
node.resize(N);
for(int i=0;i<N;i++){
cin>>node[i];
}
for(int i=0;i<M;i++){
int index,arrSize;
cin>>index>>arrSize;
for(int j=0;j<arrSize;j++){
int temp;
cin>>temp;
edge[index].push_back(temp);
}
}
DFS(0);
sort(result.begin(),result.end(),compare);//按字典逆序排序
for(int i=0;i<result.size();i++){
for(int j=0;j<result[i].size();j++){
j<result[i].size()-1?cout<<result[i][j]<<" ":cout<<result[i][j]<<endl;
}
}
return 0;
}