1021. Deepest Root (25)

给定一个连通且无环的图,将其视为一棵树。任务是找到使得树高度最大的根节点,这样的根节点称为最深根。输入包含一个测试案例,首先给出节点数量N(<=10000),接着N-1行描述每条边连接的节点。若图不是一棵树,输出错误信息并附上连通组件的数量。解题思路包括使用DFS计算连通子图和最深根路径,使用邻接表(vector)降低内存消耗。

A graph which is connected and acyclic can be considered a tree.  The height of the tree depends on the selected root.  Now you are supposed to find the root that results in a highest tree.  Such a root is called the deepest root.

Input Specification:

Each input file contains one test case.  For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N.  Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line.  If such a root is not unique, print them in increasing order of their numbers.  In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:

Error: 2 components

解题基本思路:用DFS获取独立子图的个数;用DFS获取每个节点到相应的叶节点的距离,这样就可以找出deepest root path;用一个for语句找出每个的deepest root path 然后排下序就ok了

注意:开始自己用邻接矩阵的数据结构,最后的一个测试点通不过的,内存超限。只能用邻接表的数据结构来实现 用vector!!

参考代码:

#include <iostream>
#include <string.h>
#include <vector>
using namespace std;
vector<vector<int> > roads;
int visited[10001];     //定义节点是否被访问
int N;
int countL = 0;         //统计独立子图的个数
int maxDeep = 0;        //记录每个节点的每条路径的最大深度
int tempIndex[10001];   //每个节点到各个叶子节点的深度记录数组
int record[10001];      //每个节点的最大深度数组
int flag = 0;
int pre = 0;            //当前节点的前一个节点 此处用来判断是否到叶节点的标记
void DFS(int d){        //用DFS统计独立子图个数
    countL++;
    visited[d] = 1;
    for(int i=0;i<roads[d].size();i++){
        if(!visited[roads[d][i]]){
            DFS(roads[d][i]);
        }
    }
}
void deepRoot(int d){   //用DFS统计每个节点到它们的叶节点的路径长度
    maxDeep++;
    visited[d] = 1;
    if(roads[d].size()==1 && pre!=0){   //is leaf
        tempIndex[flag++] = maxDeep;
    }else{
        for(int i=0;i<roads[d].size();i++){
            if(!visited[roads[d][i]]){
                pre = d;
                deepRoot(roads[d][i]);
            }
        }
    }
    maxDeep--;
}
int main()
{
    cin>>N;
    roads.assign(N+1, vector<int>());
    for(int i=0;i<N-1;i++){
        int a,b;
        cin>>a>>b;
        roads[a].push_back(b);
        roads[b].push_back(a);
    }
    DFS(1);
    if(countL<N){   //have more than one components
        memset(visited,0,sizeof(visited));
        int components = 0;
        for(int i=1;i<=N;i++){
            if(!visited[i]){
                DFS(i);
                components++;
            }
        }
        cout<<"Error: "<<components<<" components";
    }else{
        for(int i=1;i<=N;i++){
            flag = 0;
            maxDeep = 0;
            memset(visited,0,sizeof(visited));
            memset(tempIndex,0,sizeof(tempIndex));
            pre = 0;
            deepRoot(i);
            int maxL = tempIndex[0];
            for(int j=0;j<N;j++){
                if(tempIndex[j]>=maxL){
                    maxL = tempIndex[j];
                    record[i-1] = maxL;
                }
            }
        }
        int endMax = record[0];
        for(int i=0;i<N;i++){   //find the max deep value
            if(record[i]>=endMax){
                endMax = record[i];
            }
        }
        for(int i=0;i<N;i++){
            if(record[i]==endMax){
                cout<<i+1<<endl;
            }
        }
    }
    return 0;
}


 

# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值