Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:7 2 3 1 5 7 6 4 1 2 3 4 5 6 7Sample Output:
4 1 6 3 5 7 2
思路:根据后序和中序遍历得出水平遍历顺序通过后序序列可以得到根和右子树的根的位子根据中序遍历序列可以得到根的左子树根节点离根节点的位移差这样就得到了根节点+左子根节点+右子根节点再利用一个队列即可得出水平遍历的序列还可以用构建二叉树的方法来做,这样也比较通用,详细分析 狂戳这里
#include<iostream> #include<queue> #include<string.h> using namespace std; int *post,*visited; const int N=31; int hash_post[N],hash_in[N]; int n; int right_size(int root){ int i=0,size=0; for(i=hash_in[root]+1;i<=n-1;i++){ if(visited[i]==false) size++; else break; } return size; } int main() { cin>>n; post=new int[n]; visited=new int [n]; int i,tmp; for(i=0;i<n;i++){ cin>>post[i]; hash_post[post[i]]=i; } for(i=0;i<n;i++){ cin>>tmp; hash_in[tmp]=i; } memset(visited,0,n*sizeof(int)); queue<int> q; q.push(post[n-1]); int right=n-1; cout<<post[n-1]; visited[hash_in[post[n-1]]]=true; while(!q.empty()){ int root=q.front(); int rsize=right_size(root); int left=hash_post[root]-rsize-1;//handle left sub tree root if(left>=0&&visited[hash_in[post[left]]]==false){ int left_root=post[left]; cout<<" "<<left_root; visited[hash_in[left_root]]=true; q.push(left_root); } int right=hash_post[root]-1;//handle right sub tree root if(right>=0&&visited[hash_in[post[right]]]==false){ int right_root=post[right]; cout<<" "<<right_root; visited[hash_in[right_root]]=true; q.push(right_root); } q.pop(); } return 0; }