What's Special About This Number?

独特数字网页分享
本文分享了一个有趣的数字相关网页,该网站收集了许多独特的数字及其背后的有趣事实。这些数字涵盖了从数学到计算机科学等多个领域。
部署运行你感兴趣的模型镜像

偶然发现的一个网页,希望大家别说我火星。
http://www.stetson.edu/~efriedma/numbers.html

您可能感兴趣的与本文相关的镜像

HunyuanVideo-Foley

HunyuanVideo-Foley

语音合成

HunyuanVideo-Foley是由腾讯混元2025年8月28日宣布开源端到端视频音效生成模型,用户只需输入视频和文字,就能为视频匹配电影级音效

1. What is an IDE (Integrated Development Environment), and what are its main components? 2. What is the role of a compiler in the C++ development process? 3. What is the difference between source code (e.g., a .cpp file) and an executable file? 4. In the "Hello, World!" program, what is the purpose of the line #include <iostream>? 5. What is special about the main() function in a C++ program? 6. Why do computers fundamentally operate using the binary (base-2) system? 7. What is the base of the hexadecimal system? Why is it often used by programmers as a shorthand for binary numbers? 8. Explain the "triad" method for converting an octal number to binary. 9. Briefly describe the "division by 2" method for converting a decimal number to binary. 10. What is the decimal value of the binary number 1011? 1. What is the purpose of the std::cout object? Which header file must be included to use it? 2.What is the difference between an escape sequence like \n and a manipulator like std::endl? (Hint: Both create a new line, but they have a subtle difference). 3.How would you print the following text to the console, including the quotes and the backslash: He said: "The file is in C:\Users\"? 4.Is it possible to write an entire multi-line text output using only one std::cout statement? If yes, how? 5.What is a syntax error? Give an example of a syntax error from Task 2. (Task 2: Debugging The following program contains several syntax errors. Copy the code into your IDE, identify the errors, fix them, and run the program to ensure it works correctly. Incorrect Code: */ Now you should not forget your glasses // #include <stream> int main { cout << "If this text" , cout >> " appears on your display, cout << " endl;" cout << &#39;you can pat yourself on &#39; << " the back!" << endl. return 0; "; ) Hint: Pay close attention to comments, header files, brackets ({}), operators (<<), semicolons, and how strings and manipulators are written.) 1. What is the difference between variable declaration and initialization? 2.What will be the result of the expression 7 / 2 in C++? Why? 3.What will be the result of the expression 10 % 3? What is the main purpose of the modulus operator? 4. What is the purpose of std::cin and the >> operator? 5. A beginner tries to swap two integer variables a and b with the code a = b; b = a;. Why will this not work correctly? 1. What is an algorithm? Name the primary ways to represent an algorithm. 2.List the main flowchart symbols and explain their purpose. 3.What are the three fundamental types of algorithm structures? Briefly describe each. 4.In a branching algorithm, what determines the flow of execution? 5.What is the key characteristic of a linear algorithm? 6.When is a cyclic algorithm structure used?7. 8. 9. 7.Explain the purpose of a connector in a flowchart. 8.What is the difference between a predefined process block and a standard process block? 9.In the context of solving a quadratic equation algorithm, what condition must be checked before calculating the roots? Why? 1. What are the three main approaches to data input and output offered by C++? 2. What is the purpose of the SetConsoleOutputCP(65001) and SetConsoleCP(65001)
functions in the provided C++ program example? 3. Explain the difference between the cin and cout objects in Stream 1/0. 4. When using formatted 1/0, which header file must be included to use manipulators like setw and setprecision? 5. List three manipulators used for data output in C++ and briefly describe what each one does. 6. In Formatted I/0 using printf), what are the conversion specifications for a decimal integer and a real number in exponential form? 7. What is the difference in how the & (address-of) operator is used when inputting a value for an integer variable versus a string variable using the scanf() function? 8. Which Character I/O function is used to output a single character to the screen, and which is used to output a string? 9. Describe the syntax and function of the ternary operator in C++. 10. What is the difference between the logical AND (&&) and logical OR (I|) operators when combining multiple conditions? 11. When is the default label executed in a C++ switch statement? 12. What is the primary purpose of the break statement within a switch block? 1. What is the main purpose of using loops in programming? 2. Explain the key difference between the for, while, and do while loops. 3. What happens if you forget to include the increment/decrement statement in a while loop? 4. How can you interrupt an infinite loop during program execution? 5. What is the role of the setw() and setfill) manipulators in C++? 6. In a nested loop, how does the inner loop behave relative to the outer loop? 7. What is type casting, and why is it used in loop calculations? 8. How does the do while loop differ from the while loop in terms of condition checking? 9. What output formatting options can be used to align numerical results in columns? 10*. How would you modify a loop to skip certain iterations based on a condition? 1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project&#39;s Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can&#39;t you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can&#39;t you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can&#39;t you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer. 用中文回答
11-18
请查看以下的C++代码的编写要求,请根据代码要求开始编写代码 PURPOSE: This file is a proforma for the EEET2246 Laboratory Code Submission/Test 1. This file defines the assessment task which is worth 10% of course in total - there is no other documentation. At the BASIC FUNCTIONAL REQUIREMENTS level, your goal is to write a program that takes two numbers from the command line and perform and arithmetic operations with them. Additionally your program must be able to take three command line arguments where if the last argument is &#39;a&#39; an addition is performed, and if &#39;s&#39; then subtraction is performed with the first two arguments. At the FUNCTIONAL REQUIREMENTS level you will be required to extend on the functionality so that the third argument can also be &#39;m&#39; for multiplication,&#39;d&#39; for division and &#39;p&#39; for exponential operations, using the first two arguments as the operands. Additionally, at this level basic error detection and handling will be required. The functionality of this lab is relatively simple: + - / * and "raised to the power of" The emphasis in this lab is to achieve the BASIC FUNCTIONALITY REQUIREMENTS first. Once you a basic program functioning then you should attempt the FUNCTIONALITY REQUIREMENTS and develop your code so that it can handle a full range of error detection and handling. ___________________________________________________________________________________________ ___ GENERAL SPECIFICATIONS (mostly common to all three EEET2246 Laboratory Code Submissions): G1. You must rename your file to lab1_1234567.cpp, where 1234567 is your student number. Your filename MUST NEVER EVER contain any spaces. _under_score_is_Fine. You do not need to include the &#39;s&#39; in front of your student number. Canvas will rename your submission by adding a -1, -2 etc. if you resubmit your solution file - This is acceptable. G2. Edit the name/email address string in the main() function to your student number, student email and student name. The format of the student ID line is CSV (Comma Separated Variables) with NO SPACES- student_id,student_email,student_name When the program is run without any operands i.e. simply the name of the executable such as: lab1_1234567.exe the program MUST print student ID string in Comma Separated Values (CSV) format with no spaces. For example the following text should be outputted to the console updated with your student details: "1234567,s1234567@student.rmit.edu.au,FirstName_LastName" G3. All outputs are a single error character or a numerical number, as specified by the FUNCTIONAL REQURMENTS, followed by a linefeed ( endl or \n). G4. DO NOT add more than what is specified to the expected console output. Do NOT add additional information, text or comments to the output console that are not defined within the SPECIFICATIONS/FUNCTIONAL REQURMENTS. G5. DO NOT use &#39;cin&#39;, system("pause"), getchar(), gets(), etc. type functions. Do NOT ask for user input from the keyboard. All input MUST be specified on the command line separated by blank spaces (i.e. use the argv and argc input parameters). G6. DO NOT use the characters: * / \ : ^ ? in your command line arguments as your user input. These are special character and may not be processed as expected, potentially resulting in undefined behaviour of your program. G7. All input MUST be specified on the command line separated by blank spaces (i.e. use the argc and argv[] input parameters). All input and output is case sensitive unless specified. G8. You should use the Integrated Debugging Environment (IDE) to change input arguments during the development process. G9. When your code exits the &#39;main()&#39; function using the &#39;return&#39; command, you MUST use zero as the return value. This requirement is for exiting the &#39;main()&#39; function ONLY. A return value other than zero will indicate that something went wrong to the Autotester and no marks will be awarded. G10. User-defined functions and/or class declarations must be written before the &#39;main()&#39; function. This is a requirement of the Autotester and failure to do so will result in your code scoring 0% as it will not be compiled correctly by the Autotester. Do NOT put any functions/class definitions after the &#39;main()&#39; function or modify the comments and blank lines at the end of this file. G11. You MUST run this file as part of a Project - No other *.cpp or *.h files should be added to your solution. G12. You are not permitted to add any other #includes statements to your solution. The only libraries permitted to be used are the ones predefined in this file. G13. Under no circumstances is your code solution to contain any go_to labels - Please note that the &#39;_&#39; has been added to this description so that this file does not flag the Autotester. Code that contains go_to label like syntax will score 0% and will be treated as code that does not compile. G14. Under no circumstances is your code solution to contain any exit_(0) type functions. Please note that the &#39;_&#39; has been added to this description so that this file does not flag the Autotester. Your solution must always exit with a return 0; in main(). Code that contains exit_(0); label like syntax will score 0% and will be treated as code that does not compile. G15. Under no circumstances is your code solution to contain an infinite loop constructs within it. For example usage of while(1), for(int i; ; i++) or anything similar is not permitted. Code that contains an infinite loop will result in a score of 0% for your assessment submission and will be treated as code that does not compile. G16. Under no circumstances is your code solution to contain any S_l_e_e_p() or D_e_l_a_y() like statements - Please note that the &#39;_&#39; has been added to this description so that this file does not flag the Autotester. You can use such statements during your development, however you must remove delays or sleeps from your code prior to submission. This is important, as the Autotester will only give your solution a limited number of seconds to complete (i.e. return 0 in main()). Failure for your code to complete the required operation/s within the allotted execution window will result in the Autotester scoring your code 0 marks for that test. To test if your code will execute in the allotted execution window, check that it completes within a similar time frame as the provided sample binary. G17. Under no circumstances is your code solution to contain any characters from the extended ASCII character set or International typeset characters. Although such characters may compile under a normal system, they will result in your code potentially not compiling under the Autotester environment. Therefore, please ensure that you only use characters: a ... z, A ... Z, 0 ... 9 as your variable and function names or within any literal strings defined within your code. Literal strings can contain &#39;.&#39;, &#39;_&#39;, &#39;-&#39;, and other basic symbols. G18. All output to console should be directed to the standard console (stdout) via cout. Do not use cerr or clog to print to the console. G19. The file you submit must compile without issues as a self contained *.cpp file. Code that does not compile will be graded as a non-negotiable zero mark. G20. All binary numbers within this document have the prefix 0b. This notation is not C++ compliant (depending on the C++ version), however is used to avoid confusion between decimal, hexadecimal and binary number formats within the description and specification provided in this document. For example the number 10 in decimal could be written as 0xA in hexadecimal or 0b1010 in binary. It can equally be written with leading zeroes such as: 0x0A or 0b00001010. For output to the console screen you should only ever display the numerical characters only and omit the 0x or 0b prefixes (unless it is specifically requested). ___________________________________________________________________________________________ ___ BASIC FUNCTIONAL REQUIREMENTS (doing these alone will only get you to approximately 40%): M1. For situation where NO command line arguments are passed to your program: M1.1 Your program must display your correct student details in the format: "3939723,s3939723@student.rmit.edu.au,Yang_Yang" M2. For situation where TWO command line arguments are passed to your program: M2.1 Your program must perform an addition operation, taking the first two arguments as the operands and display only the result to the console with a new line character. Example1: lab1_1234567.exe 10 2 which should calculate 10 + 2 = 12, i.e. the last (and only) line on the console will be: 12 M3. For situations where THREE command line arguments are passed to your program: M3.1 If the third argument is &#39;a&#39;, your program must perform an addition operation, taking the first two arguments as the operands and display only the result to the console with a new line character. M3.2 If the third argument is &#39;s&#39;, your program must perform a subtraction operation, taking the first two arguments as the operands and display only the result to the console with a new line character. The second input argument should be subtracted from the first input argument. M4. For situations where less than TWO or more than THREE command line arguments are passed to your program, your program must display the character &#39;P&#39; to the console with a new line character. M5. For specifications M1 to M4 inclusive: M5.1 Program must return 0 under all situations at exit. M5.2 Program must be able to handle integer arguments. M5.3 Program must be able to handle floating point arguments. M5.4 Program must be able to handle one integer and one floating point argument in any order. Example2: lab1_1234567.exe 10 2 s which should calculate 10 - 2 = 8, i.e. the last (and only) line on the console will be: 8 Example3: lab1_1234567.exe 10 2 which should calculate 10 + 2 = 12, i.e. the last (and only) line on the console will be: 12 Example4: lab1_1234567.exe 10 4 a which should calculate 10 + 4 = 14, i.e. the last (and only) line on the console will be: 14 ___________________________________________________________________________________________ ___ FUNCTIONAL REQUIREMENTS (to get over approximately 50%): E1. For situations where THREE command line arguments (other than &#39;a&#39; or &#39;s&#39;) are passed to your program: E1.1 If the third argument is &#39;m&#39;, your program must perform a multiplication operation, taking the first two arguments as the operands and display only the result to the console with a new line character. E1.2 If the third argument is &#39;d&#39;, your program must perform a division operation, taking the first two arguments as the operands and display only the result to the console with a new line character. E1.3 If the third argument is &#39;p&#39;, your program must perform an exponential operation, taking the first argument as the base operand and the second as the exponent operand. The result must be display to the console with a new line character. Hint: Consider using the pow() function, which has the definition: double pow(double base, double exponent); Example5: lab1_1234567.exe 10 2 d which should calculate 10 / 2 = 5, i.e. the last (and only) line on the console will be: 5 Example6: lab1_1234567.exe 10 2 p which should calculate 10 to power of 2 = 100, i.e. the last (and only) line on the console will be: 100 NOTE1: DO NOT use the character ^ in your command line arguments as your user input. Question: Why don&#39;t we use characters such as + - * / ^ ? to determine the operation? Answer: Arguments passed via the command line are processed by the operating system before being passed to your program. During this process, special characters such as + - * / ^ ? are stripped from the input argument stream. Therefore, the input characters: + - * / ^ ? will not be tested for by the autotester. See sections G6 and E7. NOTE2: the pow() and powl() function/s only work correctly for given arguments. Hence, your code should output and error if there is a domain error or undefined subset of values. For example, if the result does not produce a real number you code should handle this as an error. This means that if the base is negative you can&#39;t accept and exponent between (but not including) -1 and 1. If you get this then, output a MURPHY&#39;s LAW error: "Y" and return 0; NOTE3: zero to the power of zero is also undefined, and should also be treated MURPHY&#39;s LAW error. So return "Y" and return 0; In Visual Studio, the 0 to the power of 0 will return 1, so you will need to catch this situation manually, else your code will likely calculate the value as 1. ___ REQUIRED ERROR HANDLING (to get over approximately 70%): The following text lists errors you must detect and a priority of testing. NB: order of testing is important as each test is slight more difficult than the previous test. All outputs should either be numerical or upper-case single characters (followed by a new line). Note that case is important: In C, &#39;V&#39; is not the same as &#39;v&#39;. (No quotes are required on the output). E2. Valid operator input: If the third input argument is not a valid operation selection, the output shall be &#39;V&#39;. Valid operators are ONLY (case sensitive): a addition s subtraction m multiplication d division p exponentiation i.e. to the power of: 2 to the power of 3 = 8 (base exponent p) E3. Basic invalid number detection (Required): Valid numbers are all numbers that the "average Engineering graduate" in Australia would consider valid. Therefore if the first two arguments are not valid decimal numbers, the output shall be &#39;X&#39;. For example: -130 is valid +100 is valid 1.3 is valid 3 is valid 0.3 is valid .3 is valid ABC123 is not valid 1.3.4 is not valid 123abc is not valid ___ ERROR HANDLING (not marked by the autotester): E4. Intermediate invalid number detection (NOT TESTED BY AUTOTESTER - for your consideration only): If the first two arguments are not valid decimal numbers, the output shall be &#39;X&#39;. Using comma punctuated numbers and scientific formatted numbers are considered valid. For example: 0000.111 is valid 3,000 is valid - NB: atof() will read this as &#39;3&#39; not as 3000 1,000.9 is valid - NB: atof() will read this as &#39;1&#39; not as 1000.9 1.23e2 is valid 2E2 is valid -3e-0.5 is not valid (an integer must follow after the e or E for floating point number to be valid) 2E2.1 is not valid e-1 is not valid .e3 is not valid E5. Advanced invalid number detection (NOT TESTED BY AUTOTESTER - for your consideration only): If the first two arguments are not valid decimal numbers, the output shall be &#39;X&#39;. 1.3e-1 is valid 1,00.0 is valid - NB: if the comma is not removed atof() will read this as &#39;1&#39; not as 100 +212+21-2 is not valid - NB: mathematical operation on a number of numbers, not ONE number 5/2 is not valid - NB: mathematical operation on a number of numbers, not ONE number HINT: consider the function atof(), which has the definition: double atof (const char* str); Checking the user input for multiple operators (i.e. + or -) is quite a difficult task. One method may involve writing a &#39;for&#39; loop which steps through the input argv[] counting the number of operators. This process could also be used to count for decimal points and the like. The multiple operator check should be considered an advanced task and developed once the rest of the code is operational. E6. Input number range checking: All input numbers must be between (and including) +2^16 (65536) or -2^16 (-65536). If the operand is out of range i.e. too small or too big, the output shall be &#39;R&#39;. LARGE NUMBERS: is 1.2e+999 acceptable input ? what happens if you enter such a number ? try and see. Hint: #INF error - where and when does it come up ? SMALL NUMBERS: is 1.2e-999 acceptable input ? what happens if you enter such a number ? try and see. Test it by writing your own test program. E7. ERROR checks which will NOT be performed are: E7.1 Input characters such as: *.* or / or \ or : or any of these characters: * / ^ ? will not be tested for. E7.2 Range check: some computer systems accept numbers of size 9999e999999 while others flag and infinity error. An infinity error becomes an invalid input Therefore: input for valid numbers will only be tested to the maximum 9.9e99 (Note: 9.9e99 is out of range and your program should output &#39;R&#39;) E8. Division by zero should produce output &#39;M&#39; E9. Error precedence: If multiple errors occur during a program execution event, your program should only display one error code followed by a newline character and then exit (using a return 0; statement). In general, the precedence of the error reported to the console should be displayed in the order that they appear within this proforma. However to clarify the exact order or precedence for the error characters, the precedence of the displayed error code should occur in this order: &#39;P&#39; - Incorrect number of input command line arguments (see M4) &#39;X&#39; - Invalid numerical command line argument &#39;V&#39; - Invalid third input argument &#39;R&#39; - operand (command line argument) value out of range &#39;M&#39; - Division by zero &#39;Y&#39; - MURPHY&#39;S LAW (undefined error) Therefore if an invalid numerical command line argument and an invalid operation argument are passed to the program, the first error code should be displayed to the console, which in this case would be &#39;X&#39;. Displaying &#39;V&#39; or &#39;Y&#39; would be result in a loss of marks. E10. ANYTHING ELSE THAT CAN GO WRONG (MURPHY&#39;S LAW TEST): If there are any other kinds of errors not covered here, the output shall be &#39;Y&#39;. Rhetorical question: What for example are the error codes that the Power function returns ? If this happens then the output shall be &#39;Y&#39;. See section E1.3, NOTE2. ___________________________________________________________________________________________ ___ HINTS: - Use debug mode and a breakpoint at the return statement prior to program finish in main. - What string conversion routines, do you know how to convert strings to number? Look carefully as they will be needed to convert a command line parameter to a number and also check for errors. - ERROR CHECKING: The basic programming rules are simple (as covered in lectures): 1) check that the input is valid. 2) check that the output is valid. 3) if any library function returns an error code USE IT !!! CHECK FOR IT !!! - Most conversion routines do have inbuilt error checking - USE IT !!! That means: test for the error condition and take some action if the error is true. If that means more than 50% of your code is error checking, then that&#39;s the way it has to be. ____________________________________________________________________________________________ */ // These are the libraries you are allowed to use to write your solution. Do not add any // additional libraries as the auto-tester will be locked down to the following: #include <iostream> #include <cstdlib> #include <time.h> #include <math.h> #include <errno.h> // leave this one in please, it is required by the Autotester! // Do NOT Add or remove any #include statements to this project!! // All library functions required should be covered by the above // include list. Do not add a *.h file for this project as all your // code should be included in this file. using namespace std; const double MAXRANGE = pow(2.0, 16.0); // 65536 const double MINRANGE = -pow(2.0, 16.0); // All functions to be defined below and above main() - NO exceptions !!! Do NOT // define function below main() as your code will fail to compile in the auto-tester. // WRITE ANY USER DEFINED FUNCTIONS HERE (optional) // all function definitions and prototypes to be defined above this line - NO exceptions !!! int main(int argc, char *argv[]) { // ALL CODE (excluding variable declarations) MUST come after the following &#39;if&#39; statement if (argc == 1) { // When run with just the program name (no parameters) your code MUST print // student ID string in CSV format. i.e. // "studentNumber,student_email,student_name" // eg: "3939723,s3939723@student.rmit.edu.au,Yang_Yang" // No parameters on command line just the program name // Edit string below: eg: "studentNumber,student_email,student_name" cout << "3939723,s3939723@student.rmit.edu.au,Yang_Yang" << endl; // Failure of your program to do this cout statement correctly will result in a // flat 10% marks penalty! Check this outputs correctly when no arguments are // passed to your program before you submit your file! Do it as your last test! // The convention is to return Zero to signal NO ERRORS (please do not change it). return 0; } //--- START YOUR CODE HERE. // The convention is to return Zero to signal NO ERRORS (please do not change it). // If you change it the AutoTester will assume you have made some major error. return 0; } // No code to be placed below this line - all functions to be defined above main() function. // End of file.
08-16
AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值