趣题:等腰直角三角形与勾股定理形式的条件

探讨等腰直角三角形中,若斜边上的两点满足特定条件,如何证明这两点与顶点构成的角度为45度。通过旋转及全等三角形的知识给出严谨证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    
    等腰直角三角形ABC,斜边BC上有两点M、N 满足BM^2 + NC^2 = MN^2。求证:∠MAN为45度。这个图形最早出现在2001年罗马尼亚数学奥赛的一道题目中。
    看答案前我先说点别的事……有多少网友住在北京?这次清北还在那个地方么?假期我没事干,想和大家一起聚一聚,吃个饭,喝个夜啤酒什么的……不知道为什么,最近酒瘾特别大。
    答案在下面。







































    
    证明:将整个图形绕A点逆时针旋转90度。显然∠MAM'为90度,BCC'也为90度。连接M'N,则BM^2 + NC^2 = M'C^2 + NC^2 = M'N^2,于是MN = M'N。又AM = AM', AN = AN,由SSS可知△AMN≌△AM'N,这样∠MAN和∠M'AN都是45度。

来源:cut-the-knot新文
Matrix67原创翻译

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值