一个与矩形剖分有关的命题(三):诡异的微积分证明

本文介绍了一个关于矩形分割的有趣数学结论:若一个矩形能被分割成多个至少有一边为整数长的小矩形,则该大矩形亦至少有一整数长的边。通过在直角坐标系中运用复指数函数积分的方法,巧妙地证明了这一结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。

    在这个命题的所有常见的证明方法中,我总觉得这个证明是最诡异的。真不知道第一个想出这个证明方法的人是怎么思考出来的。把矩形放在平面直角坐标系上,左下角对齐原点(0,0)。考虑函数e^(2 · pi · i · (x+y))在每个小矩形上的积分(展开并分离变量分别积分):
    

    显然,这个式子等于0当且仅当(x1-x0)和(y1-y0)中至少一个是整数(也即至少有一边的长度是整数)。考虑函数在整个大矩形上的积分,它可以拆成各个小矩形上的积分的和,因此结果仍然是0。这说明,大矩形至少有一条整数长的边。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值