(严重火星)只在一点连续的函数?

本文探讨了如何构造只在一个点连续的函数,并介绍了与之相关的Dirichlet函数及其变种。通过改变函数定义,可以进一步构造出只在有限多个点连续的函数。
部署运行你感兴趣的模型镜像

    有人突然问到我,有不有可能构造一个函数,它只在一个点连续,其余地方处处不连续。函数构造是一个非常诱人的问题,我非常喜欢那些具有各种不可思议的性质的函数,那些令人吃惊的特性往往违背了大多数人的直觉和常识,这些都是茶余饭后闲谈的绝佳话题。前面提到的这个问题就是一个很有趣的问题。永远不要想当然地以为只在一点连续的函数不存在,各种怪相函数可谓无奇不有。仔细考虑了一下,我想这个函数应该和Dirichlet函数有点联系吧,毕竟很多与连续性相关的函数其原型都是Dirichlet函数,比如满足“无理点处处连续、有理点处处不连续”的爆米花函数就有Dirichlet函数的影子。然后我就突然想到,我彻底火星了,而且还是超级乌龙火星——这个玩意儿我自己还在Blog上写过,只是当时我并没注意到罢了。我曾经在描述Hilbert曲线时写到:

    你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个最小正周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗?
    …………
    有了Cauchy定义,回过头来看前面的问题,我们可以推出:第一个函数在任何一点都不连续,因为当ε< 1时,δ范围内总存在至少一个点跳出了ε的范围;第二个函数只在x=0处是连续的,因为此时不管ε是多少,只需要δ比ε小一点就可以满足ε-δ定义了。

    类似地,我们可以扩展出只在两个点、只在三个点连续的函数。只需把有理点上的f(x)=x换成f(x)=(x-a)(x-b)(x-c),我们便得到一个只在a, b, c三点连续的函数。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

``` #include<bits/stdc++.h> #define ll long long using namespace std; struct Node{ int v,p,sz; unsigned ll he; Node *cl,*cr; Node(int x):v(x),p(rand()),sz(1),he(x),cl(nullptr),cr(nullptr){} ~Node(){ delete cl; delete cr; } friend int siz(Node *x){ if(x==nullptr)return 0; return x->sz; } void push_up(){ sz=1; he=v*(1u<<siz(cl)); if(cl!=nullptr){ sz+=cl->sz; he+=cl->he; } if(cr!=nullptr){ sz+=cr->sz; he+=(1ull<<(siz(cl)+1))*cr->he; } } friend Node* merge(Node *x,Node *y){ if(x==nullptr)return y; if(y==nullptr)return x; if(x->p<y->p){ x->cr=merge(x->cr,y); x->push_up(); return x; }else{ y->cl=merge(x,y->cl); y->push_up(); return y; } } friend Node* split(Node *&x,int r){ if(x==nullptr)return nullptr; if(siz(x->cl)>=r){ Node *t=split(x->cl,r); swap(t,x->cl); x->push_up(); swap(t,x); return t; }else{ Node *t=split(x->cr,r-siz(x->cl)-1); x->push_up(); return t; } } friend void change(Node *&h,int x,Node w){ Node *wr=split(h,x),*dq=split(h,x-1); delete dq; h=merge(h,merge(new Node(w),wr)); } friend void add(Node *&h,int x,Node w){ Node *wr=split(h,x); h=merge(h,merge(new Node(w),wr)); } }; int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); string s; cin>>s; Node *tr1=nullptr,*tr2=nullptr; for(int i=0;i<s.size();++i){ tr1=merge(tr1,new Node(s[i]-'a'+1)); tr2=merge(tr2,new Node(s[i]-'a'+1)); } int T; cin>>T; while(T--){ char op; cin>>op; if(op=='Q'){ int x,y; cin>>x>>y; Node *r1=split(tr1,x-1),*r2=split(tr2,y-1); int ans=0; for(int i=20;i>=0;--i){ if(ans+(1<<i)>min(siz(r1),siz(r2)))continue; Node *rr1=split(r1,ans+(1<<i)),*rr2=split(r2,ans+(1<<i)); if(r1->he==r2->he)ans+=1<<i; merge(r1,rr1); merge(r2,rr2); } cout<<ans<<endl; tr1=merge(tr1,r1); tr2=merge(tr2,r2); }else if(op=='R'){ int x; char c; cin>>x>>c; change(tr1,x,Node(c-'a'+1)); change(tr2,x,Node(c-'a'+1)); }else{ int x; char c; cin>>x>>c; add(tr1,x,Node(c-'a'+1)); add(tr2,x,Node(c-'a'+1)); } } delete tr1; delete tr2; return 0; }```debug # P4036 [JSOI2008] 火星人 ## 题目描述 火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。 比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号: ``` 序号 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m ``` 现在,火星人定义了一个函数 $LCQ(x, y)$,表示:该字符串中第 $x$ 个字符开始的字串,与该字符串中第 $y$ 个字符开始的字串,两个字串的公共前缀的长度。比方说,$LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0$ 在研究 $LCQ$ 函数的过程中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出 $LCQ$ 函数的值;同样,如果求出了 $LCQ$ 函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取 $LCQ$ 函数的快速算法,但不甘心认输的地球人又给火星人出了个难题:在求取 $LCQ$ 函数的同时,还可以改变字符串本身。具体地说,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此复杂的问题中,火星人是否还能够做到很快地求取 $LCQ$ 函数的值。 ## 输入格式 第一行给出初始的字符串。第二行是一个非负整数 $M$ ,表示操作的个数。接下来的M行,每行描述一个操作。操作有 $3$ 种,如下所示 1. 询问。语法:$Q$ $x$ $y$ ,$x$ ,$y$ 均为正整数。功能:计算 $LCQ(x,y)$ 限制:$1$ $\leq$ $x$ , $y$ $\leq$ 当前字符串长度 。 2. 修改。语法:$R$ $x$ $d$,$x$ 是正整数,$d$ 是字符。功能:将字符串中第 $x$ 个数修改为字符 $d$ 。限制:$x$ 不超过当前字符串长度。 3. 插入:语法:$I$ $x$ $d$ ,$x$ 是非负整数,$d$ 是字符。功能:在字符串第 $x$ 个字符之后插入字符 $d$ ,如果 $x=0$,则在字符串开头插入。限制:$x$ 不超过当前字符串长度 ## 输出格式 对于输入文件中每一个询问操作,你都应该输出对应的答案。一个答案一行。 ## 输入输出样例 #1 ### 输入 #1 ``` madamimadam 7 Q 1 7 Q 4 8 Q 10 11 R 3 a Q 1 7 I 10 a Q 2 11 ``` ### 输出 #1 ``` 5 1 0 2 1 ``` ## 说明/提示 1. 所有字符串自始至终都只有小写字母构成。 2. $M\leq150,000$ 3. 字符串长度L自始至终都满足$L\leq100,000$ 4. 询问操作的个数不超过 $10,000$ 个。 对于第 $1$,$2$ 个数据,字符串长度自始至终都不超过 $1,000$ 对于第 $3$,$4$,$5$ 个数据,没有插入操作。 2024/07/40 更新一组 hack。
最新发布
04-05
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值