最近几天碰到的几个有趣的问题

部署运行你感兴趣的模型镜像

最近几天见到了几道零散的、不成系统的趣题,在这里合成一篇文章,与大家分享。

1. 证明:对任意正整数n,n^2+n+1一定不是完全平方数。

2. 说一个实数是可表达的,当且仅当它能用有限长的语句明确地描述出来,如2147483648可以说成是“二的三十一次方”,√2即为“平方后等于二的正实数”,π即为“圆的周长和直径之比”。问题是,是否存在一个不可表达的实数?

3. 一个人有两个小孩儿,其中有一个生于星期二的男孩儿。问另一个是男孩儿的概率是多少?

4. 无需积分,计算

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. 证明:对任意正整数n,n^2+n+1一定不是完全平方数。
答案:n^2+n+1大于n^2而小于(n+1)^2,位于两个相邻平方数之间,显然不可能是一个完全平方数。

2. 说一个实数是可表达的,当且仅当它能用有限长的语句明确地描述出来,如2147483648可以说成是“二的三十一次方”,√2即为“平方后等于二的正实数”,π即为“圆的周长和直径之比”。问题是,是否存在一个不可表达的实数?
答案:存在。因为有限长的字符串是可数的(按字符串的长度排序,长度相同则按字典序排),但实数集是不可数的。有趣的是,这个问题的证明一定是非构造性的。

3. 一个人有两个小孩儿,其中有一个生于星期二的男孩儿。问另一个是男孩儿的概率是多少?
答案:13/27。这是“已知有一个男孩儿,问另一个是男孩儿的概率”的加强版,是一个非常精彩的条件概率问题。它非常直观地告诉我们,事先提供更准确的信息能给概率带来怎样的变化。另一个有趣的问题见这里

4. 无需积分,计算
答案:显然。但是,我们有

于是立即可知,

您可能感兴趣的与本文相关的镜像

Dify

Dify

AI应用
Agent编排

Dify 是一款开源的大语言模型(LLM)应用开发平台,它结合了 后端即服务(Backend as a Service) 和LLMOps 的理念,让开发者能快速、高效地构建和部署生产级的生成式AI应用。 它提供了包含模型兼容支持、Prompt 编排界面、RAG 引擎、Agent 框架、工作流编排等核心技术栈,并且提供了易用的界面和API,让技术和非技术人员都能参与到AI应用的开发过程中

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值