非线性算子
又称非线性映射,不满足线性条件的算子。泛函分析的研究对象主要是 线性算子及其特殊情况线性泛函。但是,自然界和工程技术中出现的大量问题都是非线性的。数学物理中的一些线性方程其实都是在一定条件下的近似。为研究这些非线性问题,涉及到的算子(映射)将不能只局限于线性算子。人们从两种不同的途径研究非线性问题:①针对具体问题,考察具体非线性算子的特征,解释非线性现象。②从一般的算子概念出发,添加适当的分析、拓扑或代数性质导出一些一般性的结论。
代数、几何、拓扑中各种非线性映射是形形色色的,分析学中经常遇到的非线性算子则大抵由乘法、函数的复合以及各种线性算子组合而成。常见的非线性积分算子有:乌雷松算子
其中K(x,y,t)是 0≤x,y≤1,t∈R1上的连续函数;沃尔泰拉算子,

;哈默斯坦算子

·

,其中K 是【0,1】×【0,1】上某p次可积函数,?(y,t)在【0,1】×R1上可测,对固定的y关于t连续。常见的微分算子有:KdV算子

,极小曲面算子

,蒙日-安培算子


等。
许多非线性算子出现于非线性方程之中,从而有关非线性算子的理论就围绕着非线性方程的求解的研究而展开。设T是从B
空间(巴拿赫空间)X到
B
空间Y的算子,设y∈Y,求解x∈X,满足:

(1)
有时特别地考察y=θ(θ是Y 中的零元)的情形,称解x为T的零点。显然,若T是一个满射,则(1)总有解,于是人们讨论在什么条件下T具有满射性.又若X=Y,方程(1)的求解问题有时化归寻求算子T1x = Tx+x-y的不动点

(2)
的问题。这样提问题有助于利用几何直观。
和线性方程的解集总是仿射集(线

又称非线性映射,不满足线性条件的算子。泛函分析的研究对象主要是 线性算子
代数、几何、拓扑中各种非线性映射是形形色色的,分析学中经常遇到的非线性算子则大抵由乘法、函数的复合以及各种线性算子组合而成。常见的非线性积分算子有:乌雷松算子








许多非线性算子出现于非线性方程之中,从而有关非线性算子的理论就围绕着非线性方程的求解的研究而展开。设T是从

有时特别地考察y=θ(θ是Y 中的零元)的情形,称解x为T的零点。显然,若T是一个满射,则(1)总有解,于是人们讨论在什么条件下T具有满射性.又若X=Y,方程(1)的求解问题有时化归寻求算子T1x = Tx+x-y的不动点

的问题。这样提问题有助于利用几何直观。
和线性方程的解集总是仿射集(线