数论专题 T3

题目背景

“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!

题目描述

彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~

PS:一个数的最大公约数即本身。

输入输出格式

输入格式:

第一行一个正整数n。

第二行为n个空格隔开的正整数,表示每个学生的能力值。

输出格式:

总共n行,第i行为k=i情况下的最大默契程度。

输入输出样例

输入样例#1:
4
1 2 3 4
输出样例#1:
4
2
1
1

说明

【题目来源】

lzn原创

【数据范围】

记输入数据中能力值的最大值为inf。

对于20%的数据,n<=5,inf<=1000

对于另30%的数据,n<=100,inf<=10

对于100%的数据,n<=10000,inf<=1e6


题解:

  对于每一个能力值分解因数。对于每一种不同人数的分法,只要某一个因数的数量大于等于这个人数即可。因为要求保证最大,所以倒序找


const
  maxn=1000000;
var
  a,p:array[1..maxn]of longint;
  n,max,i,j,now:longint;

procedure init;
var
  i,j:longint;
begin
  readln(n);
  for i:=1 to n do
  begin
    read(a[i]);
    for j:=1 to trunc(sqrt(a[i])) do
      if a[i] mod j=0 then
      begin
        inc(p[j]);
        if j*j<a[i] then inc(p[a[i] div j]);
      end;
    if a[i]>max then max:=a[i];
  end;
end;

begin
  init;
  for i:=1 to n do
  begin
    while (p[max]<i) do dec(max);
    writeln(max);
  end;
end.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值