14.2.2 Operator overloading

博客介绍了运算符重载相关内容。除预定义实现外,可在类和结构体中声明用户自定义运算符实现,且其优先于预定义实现。列举了可重载的一元和二元运算符,指出部分运算符不可重载,还说明了运算符表示法、参数要求等规则。
All unary and binary operators have predefined implementations that are
automatically available in any
expression. In addition to the predefined implementations, user-defined
implementations can be introduced
by including operator declarations in classes and structs (?7.9).
User-defined operator implementations
always take precedence over predefined operator implementations: Only when
no applicable user-defined
operator implementations exist will the predefined operator implementations
be considered, as described in
?4.2.3 and ?4.2.4.
The overloadable unary operators are:
+ - ! ~ ++ -- true false
[Note: Although true and false are not used explicitly in expressions (and
therefore are not included in
the precedence table in ?4.2.1), they are considered operators because
they are invoked in several
expression contexts: boolean expressions (?4.16) and expressions involving
the conditional (?4.12), and
conditional logical operators (?4.11). end note]
The overloadable binary operators are:
+ - * / % & | ^ << >> == != > < >= <=
Only the operators listed above can be overloaded. In particular, it is not
possible to overload member
access, method invocation, or the =, &&, ||, ?:, checked, unchecked, new,
typeof, as, and
is operators.
When a binary operator is overloaded, the corresponding assignment
operator, if any, is also implicitly
overloaded. [Example: For example, an overload of operator * is also an
overload of operator *=. This is
described further in ?4.13. end example] The assignment operator itself
(=) cannot be overloaded. An
assignment always performs a simple bit-wise copy of a value into a
variable.
Cast operations, such as (T)x, are overloaded by providing user-defined
conversions (?3.4).
Element access, such as a[x], is not considered an overloadable operator.
Instead, user-defined indexing is
supported through indexers (?7.8).
In expressions, operators are referenced using operator notation, and in
declarations, operators are referenced
using functional notation. The following table shows the relationship
between operator and functional
notations for unary and binary operators. In the first entry, op denotes
any overloadable unary prefix
operator. In the second entry, op denotes the unary postfix ++ and --
operators. In the third entry, op
denotes any overloadable binary operator. [Note: For an example of
overloading the ++ and -- operators see
?7.9.1. end note]
Operator notation Functional notation
op x operator op(x)
x op operator op(x)
x op y operator op(x, y)
User-defined operator declarations always require at least one of the
parameters to be of the class or struct
type that contains the operator declaration. [Note: Thus, it is not
possible for a user-defined operator to have
the same signature as a predefined operator. end note]
User-defined operator declarations cannot modify the syntax, precedence, or
associativity of an operator.
[Example: For example, the / operator is always a binary operator, always
has the precedence level
specified in ?4.2.1, and is always left-associative. end example]
[Note: While it is possible for a user-defined operator to perform any
computation it pleases,
implementations that produce results other than those that are intuitively
expected are strongly discouraged.
For example, an implementation of operator == should compare the two
operands for equality and return
an appropriate bool result. end note]
The descriptions of individual operators in ?4.5 through ?4.13 specify
the predefined implementations of
the operators and any additional rules that apply to each operator. The
descriptions make use of the terms
unary operator overload resolution, binary operator overload resolution,
and numeric promotion,
definitions of which are found in the following sections.
AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值