9.5 Pre-processing directives

本文介绍了C#中的预处理器指令,其可条件性跳过源文件部分、报告错误和警告,还能划分代码区域。文中列举了#define、#if等指令的用途,指出指令占单独行且以#开头,含特定指令的行可跟单行注释,虽不是语法一部分,但会影响程序含义。
9.5 Pre-processing directives
The pre-processing directives provide the ability to conditionally skip
sections of source files, to report error and
warning conditions, and to delineate distinct regions of source code.
[Note: The term .pre-processing directives.
is used only for consistency with the C and C++ programming languages. In
C#, there is no separate preprocessing
step; pre-processing directives are processed as part of the lexical
analysis phase. end note]
pp-directive::
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
The following pre-processing directives are available:
. #define and #undef, which are used to define and undefine, respectively,
conditional compilation symbols
(§9.5.3).
. #if, #elif, #else, and #endif, which are used to conditionally skip
sections of source code (§9.5.1).
. #line, which is used to control line numbers emitted for errors and
warnings (§9.5.7).
. #error and #warning, which are used to issue errors and warnings,
respectively (§9.5.5).
. #region and #endregion, which are used to explicitly mark sections of
source code (§9.5.6).
A pre-processing directive always occupies a separate line of source code
and always begins with a # character
and a pre-processing directive name. White space may occur before the #
character and between the # character
and the directive name.
A source line containing a #define, #undef, #if, #elif, #else, #endif, or
#line directive may end with a
single-line comment. Delimited comments (the /* */ style of comments) are
not permitted on source lines
containing pre-processing directives.
Pre-processing directives are not tokens and are not part of the syntactic
grammar of C#. However, preprocessing
directives can be used to include or exclude sequences of tokens and can in
that way affect the
meaning of a C# program. [Example: For example, when compiled, the program
#define A
#undef B
class C
{
#if A
void F() {}
#else
void G() {}
#endif
Chapter 9 Lexical structure
63
#if B
void H() {}
#else
void I() {}
#endif
}
results in the exact same sequence of tokens as the program
class C
{
void F() {}
void I() {}
}
Thus, whereas lexically, the two programs are quite different,
syntactically, they are identical. end example]
内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值