Ball
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 883 Accepted Submission(s): 290
Problem Description
ZZX has a sequence of boxes numbered
1,2,...,n.
Each box can contain at most one ball.
You are given the initial configuration of the balls. For 1≤i≤n, if the i-th box is empty then a[i]=0, otherwise the i-th box contains exactly one ball, the color of which is a[i], a positive integer. Balls with the same color cannot be distinguished.
He will perform m operations in order. At the i-th operation, he collects all the balls from boxes l[i],l[i]+1,...,r[i]-1,r[i], and then arbitrarily put them back to these boxes. (Note that each box should always contain at most one ball)
He wants to change the configuration of the balls from a[1..n] to b[1..n] (given in the same format as a[1..n]), using these operations. Please tell him whether it is possible to achieve his goal.
You are given the initial configuration of the balls. For 1≤i≤n, if the i-th box is empty then a[i]=0, otherwise the i-th box contains exactly one ball, the color of which is a[i], a positive integer. Balls with the same color cannot be distinguished.
He will perform m operations in order. At the i-th operation, he collects all the balls from boxes l[i],l[i]+1,...,r[i]-1,r[i], and then arbitrarily put them back to these boxes. (Note that each box should always contain at most one ball)
He wants to change the configuration of the balls from a[1..n] to b[1..n] (given in the same format as a[1..n]), using these operations. Please tell him whether it is possible to achieve his goal.
Input
First line contains an integer t. Then t testcases follow.
In each testcase: First line contains two integers n and m. Second line contains a[1],a[2],...,a[n]. Third line contains b[1],b[2],...,b[n]. Each of the next m lines contains two integers l[i],r[i].
1<=n<=1000,0<=m<=1000, sum of n over all testcases <=2000, sum of m over all testcases <=2000.
0<=a[i],b[i]<=n.
1<=l[i]<=r[i]<=n.
In each testcase: First line contains two integers n and m. Second line contains a[1],a[2],...,a[n]. Third line contains b[1],b[2],...,b[n]. Each of the next m lines contains two integers l[i],r[i].
1<=n<=1000,0<=m<=1000, sum of n over all testcases <=2000, sum of m over all testcases <=2000.
0<=a[i],b[i]<=n.
1<=l[i]<=r[i]<=n.
Output
For each testcase, print "Yes" or "No" in a line.
Sample Input
5 4 1 0 0 1 1 0 1 1 1 1 4 4 1 0 0 1 1 0 0 2 2 1 4 4 2 1 0 0 0 0 0 0 1 1 3 3 4 4 2 1 0 0 0 0 0 0 1 3 4 1 3 5 2 1 1 2 2 0 2 2 1 1 0 1 3 2 4
Sample Output
No No Yes No Yes
思路:分别判断出每个球对应的位置,用nex数组存起来,然后针对每个球判断经过所有操作之后能否到达,如果能到达则是yes,否则no。
#include <iostream>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<map>
#include<stdlib.h>
#include<time.h>
using namespace std;
typedef long long ll;
int l[1010],r[1010];
int jl[1010],nex[1010];
vector<int>a[1010],b[1010];
int A[1010],B[1010];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(jl,0,sizeof(jl));
memset(nex,0,sizeof(nex));
for(int i=0;i<=1005;i++)
{a[i].clear();b[i].clear();}
int n,m,flag=1;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
{
scanf("%d",&A[i]),jl[A[i]]++;
a[A[i]].push_back(i);
}
for(int i=1; i<=n; i++)
{
scanf("%d",&B[i]),jl[B[i]]--;
b[B[i]].push_back(i);
}
for(int i=0; i<=1005; i++)
if(jl[i]!=0)
{
flag=0;
break;
}
for(int i=0; i<m; i++)
{
scanf("%d%d",&l[i],&r[i]);
if(l[i]>r[i])swap(l[i],r[i]);
}
if(!flag)puts("No");
else
{
bool vis[1010]= {0};
for(int i=1; i<=n; i++)
if(!vis[A[i]])
{
vis[A[i]]=1;
for(int j=0,l=a[A[i]].size(); j<l; j++)
{
nex[a[A[i]][j]]=b[A[i]][j];
}
}
int ff=1;
for(int i=1; i<=n; i++)
{
ff=0;
int now=i,to=nex[i],ml=i,mr=i;
if(now==to)
{
ff=1;
continue;
}
for(int j=0; j<m; j++)
{
if(l[j]<=ml&&r[j]>=mr)
ml=l[j],mr=r[j];
else if(l[j]>=ml&&l[j]<=mr&&r[j]>mr)
mr=r[j];
else if(r[j]<=mr&&r[j]>=ml&&l[j]<ml)
ml=l[j];
if(to>=ml&&to<=mr)
{
ff=1;
break;
}
}
//cout<<i<<":"<<ml<<"->"<<mr<<endl;
if(!ff)
break;
}
//cout<<endl;
if(!ff)puts("No");
else puts("Yes");
}
}
return 0;
}